Stormwater Management Program Plan

Village of IsLand Lake LaKE COUNTY, ILLINOIS

December 2016

SMPP

Prepared with the assistance of
The Lake County Stormwater Management Commission
333 Peterson Road
Libertyville, IL 60048
Phone 847-918-5260 • Fax 847-918-9826
and
Bleck Engineering Company, Inc.
313 East Lake Street
Silver Lake, WI 53170
Phone 262-889-2218 • Fax 262-889-2226
and
Baxter \& Woodman, Inc.
8678 Ridgefield Road
Crystal Lake, IL 60012

Table of Contents

1 Overview of the Stormwater Management Program Plan 6
1.1 Introduction 6
1.2 History 7
1.3 Water Quality Standards 9
1.3.A Designated Uses 9
1.3.B Water Quality Criteria 10
1.3.C Monitoring 10
1.3.D Total Maximum Daily Load (TMDL) 11
1.4 Watershed, Sub-watersheds and Receiving Waters 11
1.4.A Watershed Descriptions 13
1.4.B Identifying Outfalls (BMP C.1) 13
1.5 Status of Waters 16
1.6 Countywide Approach to NPDES Compliance 17
2 Program Management 19
2.1 Implementation of this SMPP 19
2.2 Intra-Department Coordination 19
2.2.A Stormwater Coordinator 19
2.2.B Engineering Department 21
2.2.C Public Works Department 21
2.3 Coordination with Lake County Stormwater Management Commission 21
2.4 Watershed Work Groups 21
2.4.A. $1 \quad$ Fox River Study Group 21
2.5 Coordination with Consultants 22
2.6 Coordination of Contractors 23
2.7 Coordination with the Public 23
2.8 Coordination with the IEPA 23
2.9 Coordination with the Development Community 23
3 The Program 24
3.1 Qualified Local Program 25
3.1.A Public Education and Outreach 25
3.1.A.1 Distributed Paper Material (BMP A.1) 25
3.1.A. 2 Speaking Engagement (BMP A.2) 26
3.1.A. 3 Public Service Announcement (BMP A.3) 27
3.1.A. 4 Outreach Events (BMP A.4) 27
3.1.A. 5 Classroom Education Material (BMP A.5) 28
3.1.A. $6 \quad$ Other Public Education - Web Site (BMP A.6) 28
3.1.B Public Participation/Involvement 28
3.1.B. $1 \quad$ Public Panel (BMP B.1) 29
3.1.B.2 Stakeholder Meeting (BMP B.3) 29
3.1.B.3 Program Involvement (BMP B.6) 30
3.1.C Illicit Discharge Detection and Elimination 30
3.1.C. 1 Regulatory Control Program (BMP C.2) 30
3.1.C.2 Other Illicit Discharge Controls (BMP C.10) 31
3.1.D Construction Site Runoff Control 31
3.1.D.1 Regulatory Control Program (BMP D.1) 32
3.1.D. $2 \quad$ Erosion and Sediment Control BMPs (BMP D.2) 32
3.1.D. $3 \quad$ Other Waste Control Program (BMP D.3) 33
3.1.D. 4 Site Plan Review Procedures (BMP D.4, E.4) 34
3.1.D. 5 Site Inspection/Enforcement Procedures (BMP D.6, E.5) 34
3.1.D.6 Public Information Handling Procedures (BMP D.5) 35
3.1.E BMP Reference Information 35
3.1.F Post-Construction Runoff Control 36
3.1.F. 1 Regulatory Control Program (BMP E.2) 36
3.1.F. $2 \quad$ Long Term O\&M (BMP E.3) 36
3.1.F. 3 Runoff Volume Reduction Hierarchy (BMP E.4) 37
3.1.F. $4 \quad$ Other Post-Construction Runoff Controls (BMP E.7) 38
3.1.G Pollution Prevention / Good Housekeeping 38
3.1.G.1 Employee Training Program (BMP F.1) 38
3.1.G. $2 \quad$ Flood Management / Assess Guidelines (BMP F.5) 39
3.1.G. $3 \quad$ Winter Roadway Deicing (BMP F.6) 39
3.1.H Watershed Plans 39
3.2 Public Education and Outreach 42
3.2.A Distribution of Paper Materials (BMP A.1) 42
3.2.B Other Public Education - Web Site (BMP A.6) 44
3.2.C Outreach Events (BMP A.4) 44
3.2.D Storm Drain Stenciling \& Markers (BMP A.6) 45
3.2.E Household Hazardous Wastes (BMP A.4) 45
3.2.F Vehicle Fluid Maintenance (BMP A.6) 46
3.2.G Car / Outdoor Washing (BMP A.6) 47
3.2.H Lawn and Garden Care (BMP A.6) 47
3.2.I Green Infrastructure (BMP A.6) 48
3.2.J Pool Dewatering (BMP A.6) 48
3.3 Public Participation and Involvement 49
3.3.A Public Review Process (BMP B.1) 49
3.3.A. 1 Environmental Justice Areas 49
3.3.A. 2 Complaints, Suggestions and Requests (BMP B.7) 50
3.3.B Illicit Discharge/lllegal Dumping Hotline (BMP B.7) 51
3.3.C Adopt-A-Highway (BMP B.7) 51
3.4 Illicit Discharge Detection and Elimination 52
3.4.A Regulatory Authority (BMP C.2) 52
3.4.A. $1 \quad$ Watershed Development Ordinance 53
3.4.A. $2 \quad$ Illicit Discharge Ordinance 53
3.4.A. 3 Subdivision and Public Utility Ordinance 53
3.4.A. 4 Regulation of Fertilizer Containing Phosphorus 53
3.4.B Understanding Outfalls and Illicit Discharges 54
3.4.B. $1 \quad$ Potential Sources of Illicit Discharges 54
3.4.B. 2 Exclusions 54
3.4.B. 3 Prohibited Discharges 55
3.4.B. $4 \quad$ Pollutant Indicators 55
3.4.C Indirect Connection Program (BMP C.3) 66
3.4.C. $1 \quad$ Groundwater Seepage 66
3.4.C. 2 Spills 66
3.4.C. 3 Dumping 67
3.4.C. 4 Outdoor washing activities 67
3.4.C. $5 \quad$ Non-target irrigation from landscaping or lawns 67
3.4.D Direct Connection Illicit Discharge Program (BMP C. 3 - C.8) 68
3.4.D. $1 \quad$ Program Planning 68
3.4.D. $2 \quad$ Outfall Inspection (BMP C.3) 70
3.4.D. $3 \quad$ Follow Up Investigation - Program Evaluation (BMP C.4) 76
3.4.D. 4 Removal of Illicit Discharges (BMP C.5) 78
3.5 Construction Site Runoff Control 80
3.5.A Regulatory Program (BMP D.1) 80
3.5.B Responsible Parties (BMP D.1) 80
3.5.B. 1 Applicant 80
3.5.B. $2 \quad$ DECI - Designated Inspectors 80
3.5.B. 3 Enforcement Officer 81
3.5.C Erosion and Sediment Control BMPs (BMP D.2) 82
3.5.D Construction Site Waste Control (BMP D.3) 82
3.5.E Site Plan Review (BMP D.4, E.4) 82
3.5.F Site Inspection Procedures (BMP D.6, E.5) 83
3.5.G Public Information Handling Procedures (BMP D.5) 83
3.5.H Performance Guarantees (BMP D.6) 84
3.5.I Violation Notification Procedures (BMP B.6) 84
3.6 Post Construction Runoff Control 85
3.6.A Regulatory Program (BMP E.2) 85
3.6.B Long Term Operation and Maintenance (BMP E.3) 86
3.6. \quad Runoff Volume Reduction Hierarchy (BMP E.4) 86
3.6.D Watershed Plans (BMP E.7) 86
3.6.E Site Inspections (BMP E.6) 87
3.6.E. $1 \quad$ Shorelines, Streambanks and Stream Bed Sediment Accumulation 87
3.6.E. 2 Detention / Retention Pond 89
3.7 Pollution Prevention and Good Housekeeping 90
3.7.A Inspection and Maintenance Program (BMPs F. 2 - F.4) 91
3.7.A. $1 \quad$ Street Sweeping 91
3.7.A. 2 Drainageways 91
3.7.A. 3 Landscape Maintenance 93
3.7.A. $4 \quad$ Snow Removal and Ice Control 94
3.7.A. $5 \quad$ Vehicle and Equipment Operations 95
3.7.A. $6 \quad$ Animal Nuisance Control 97
3.7.A. $7 \quad$ Waste Management (BMP F.4) 97
3.7.A. $8 \quad$ Water Conservation \& Irrigation 98
3.7.A. $9 \quad$ Green Infrastructure 99
3.7.A. $10 \quad$ Special Events 99
3.7.B Spill Response Plan (BMP F.6, C.9) 100
3.7.B. $1 \quad$ Spill Prevention 100
3.7.B. $2 \quad$ Non-Hazardous Spills/Dumping 101
3.7.B.3 Hazardous Spills 101
3.7.C Employee Training (BMP F.1) 102
3.7.C. $1 \quad$ Training Approach 102
3.7.C. $2 \quad$ Training Schedule and Frequency 103
4 Program and Performance Monitoring, Evaluation and Reporting 104
4.1 Monitoring Program 104
4.1.A Fox River Study Group 105
4.1.B Small Community Monitoring 106
4.2 Program Evaluation (BMP C.6) 106
4.2.A Monitoring Program Evaluation 107
4.2.B IDDE Program Evaluation 107
4.2.C SMPP Document Evaluation 108
5 Appendices 109
5.1 List of Acronyms 110
5.2 Stormwater Outfall Screening Equipment Checklist 111
5.3 Stormwater Outfall Inspection Data Form 112
5.4 Pre-Construction Meeting Form 113
5.5 Soil Erosion and Sediment Control Inspection Form 114
5.6 Sample Notice of Violation Letter 115
5.7 Indirect Illicit Discharge Tracking and Summary Forms 116
5.8 Spill Response Notice 117
5.9 Sample Maintenance Plans 118
5.10Yearly Tracking Forms 119
5.11Pool Dewatering Fact Sheet 120
5.12General Permit ILR40 121
5.13Bibliography and References 122
List of Tables and Figures
Figure 1: Designated Uses 9
Figure 2: Mississippi River Watershed 11
Figure 4: Major Sub-watersheds and Receiving Streams 12
Figure 5: Significant Outfall Locations 15
Figure 6: Impaired Waters 2014 303d and 305b Reports by IEPA 16
Figure 7: Roles of MS4 20
Figure 8: Watershed Based Plan Status 41
Figure 9 Turbidity Severity Examples 58
Figure 10 Natural Sheen versus Synthetic 59
Figure11: Characterizing Submersion and Flow 73
Figure 13: Detention Basin Assessments in the 9 Lakes Planning Area 88
Figure 14: Countywide Monitoring Efforts 105
Table 1: Odor or Potential Illicit Discharges (adapted from CWP) 56
Table 2: Color of Potential IIlicit Discharges (adapted from CWP) 56
Table 3: Floatables in Potential Illicit Discharges (adapted from CWP) 60

1 Overview of the Stormwater Management Program Plan

1.1 Introduction

This Stormwater Management Program Plan (SMPP) was developed by the Village based off a SMPP template provided by the Lake County Stormwater Management Commission. The purpose of the SMPP is to meet the minimum standards required by the United States Environmental Protection Agency (USEPA) under the National Pollutant Discharge Elimination System (NPDES) Phase II program. Federal regulations through the USEPA require that all Municipal Separate Storm Sewer Systems (MS4s), partially or fully in urbanized areas based on the 2000 census, obtain stormwater permits for their discharges into receiving waters. Illinois EPA has issued a new version of its MS4 Permit. The new version of the permit became effective on March 1, 2016. According to the new permit, MS4s have 180 days from the effective date of the permit to comply with any changes or new provisions contained in the permit.

The SMPP describes the procedures and practices that can be implemented by the Village toward the goal of reducing the discharge of pollutants within stormwater runoff in order to comply with Federal standards. Compliance with the plan is intended to protect water quality thus contributing to the following amenities:

- cleaner lakes and streams,
- improved recreational opportunities and tourism,
- flood damage reduction,
- better aesthetics and wildlife habitat, and
- a safer and healthier environment for the citizens.

The SMPP addresses the primary program elements, including the manner in which the Village:

- reviews, permits and inspects construction activity within its limits;
- manages the planning, design and construction of projects performed within its limits;
- maintains its facilities and performs its day-to-day operations;
- works toward protecting the receiving waters from illicit discharges;
- provides public education and outreach;
- trains its employees in carrying out and reporting program activities; and
- continually monitors and evaluates the program.

1.2 History

The Act was further refined in 1977, to extend deadlines and better define types of pollutants. It became commonly referred to as the Clean Water Act.

The NPDES permit process regulates the discharge from MS4s, construction sites and industrial activities based on amendments to CWA in 1987 and the subsequent 1990 and 1999 regulations by the U.S. Environmental Protection Agency (USEPA). In Illinois, the USEPA has delegated administration of the federal NDPES program to the lllinois Environmental Protection Agency (IEPA). On December 20, 1999 the IEPA issued a general NPDES Phase Il permit for all MS4s. Under the General Permit each MS4 was required to submit a Notice of Intent (NOI) declaring compliance with the conditions of the permit by March 10, 2003. The original NOI describes the proposed activities and best management practices that occurred over the original 5 -year period toward the ultimate goal of developing a compliant SMPP. At the end of the $5^{\text {th }}$ year (March 1,2008) the components of the SMPP were required to be implemented; per the ILR40 permit. The IEPA reissued the ILR 40 permit on April 1, 2009.

Additionally, under the General ILR10 permit also administered IEPA, all construction projects that disturb greater than 1 acre of total land area are required to obtain an NPDES permit from IEPA prior to the start of construction. Municipalities covered by the General ILR40 permit, are automatically covered under ILR10 30 days after the IEPA receives the NOI from the municipality.

1.3 Water Quality Standards

The 1987 Water Quality Act also established new requirements and funding, through the Clean Water Act Section 319, for states to development and implement nonpoint source pollution control. Specifically, Section 319 required each state to: (1) identify navigable waters that, without government action to control non-point sources of pollution, cannot be reasonably expected to maintain applicable water quality standards or goals; (2) identify nonpoint sources that add significant amounts of pollution to affected waters; and (3) development a nonpoint source water pollution plan on a watershed-by-watershed basis. The Illinois Environmental Protection Agency (IEPA) created a program to comply with these federal regulations. This program has 3 basic components.

1.3.A Designated Uses

One of IEPA's first steps in achieving compliance with the Act was to identify all uses its waters should support. IEPA identified 7 designated uses, as depicted on Figure 1. Then each navigable water was evaluated to identify the designated uses it should support.

Figure 1: Designated Uses

1.3.B Water Quality Criteria

IEPA determined a set of water quality criteria that need to meet based on each of the 7 designated uses. Some criteria are applicable for multiple Designated Uses.

1.3.C Monitoring

IEPA is required to conduct a monitoring program for all of its receiving streams based on the water quality criteria it should be meet for each of its designated uses according to the following process.

- Conduct Monitoring per Designated Use
- Determine if Water Quality Criteria are met
- Include Non-Supporting Waters on Impaired Waters report
- Rank non-supporting waters based on severity of problem.

IEPA is required to submit the monitoring results [305(b) report] to USEPA every 2 years. The impaired waters report [303(d) report] and ranking are part of this report.

1.3.D Total Maximum Daily Load (TMDL)

Total Maximum Daily Load (TMDL) reports are created by IEPA for impaired waters. These reports are created by IEPA based on severity. IEPA creates TMDL reports for impaired waters with the highest ranks. The majority of impaired waters do not yet have TMDL reports. This graphic identifies the pieces of a TMDL report. Once the TMDL report is approved by the USEPA, the recommended strategies should be implemented by the affected MS4.

1.4 Watershed, Sub-watersheds and Receiving Waters

All storm water runoff from the Village discharges into the Illinois River, a tributary to the Mississippi River. There are several receiving streams tributary to the Fox River (a tributary to the Illinois River) located within the Village. These streams include Mutton Creek, Fish Lake Drain, and Cotton Creek (the drain from Island Lake). Topographic characteristics of the Village are typical of those in northeastern Illinois. Floodplains tend to be broad and flat with relatively small channels.

Figure 2: Mississippi River Watershed

Watershed: The land area that contributes storm water to one of the four major Rivers in Lake County.

Sub-Watershed: The land area that contributes storm water to one of the receiving waters tributary to a major River.

Receiving Water: A natural or man-made system into which storm water or treated wastewater is discharged, including the four major rivers in Lake County, their tributary stream systems and other Waters of the U.S.

Figure 3: Lake County's Watersheds \& Subwatersheds

Figure 4: Major Sub-watersheds and Receiving Streams

1.4.A Watershed Descriptions

Fox River Watershed

The Fox River originates about 15 miles northwest of Milwaukee, Wisconsin. The river enters the northwest corner of Lake County in the Chain O'Lakes area and then enters McHenry County, but reenters Lake County south of Fox River Valley Gardens. About 163 square miles of Lake County drains to the Fox River.

Along the Fox River from the state line to Algonquin, the terrain is flat and contains many lakes and low-lying wetlands. The upland areas of the watershed include gently sloping topography to steep hilly terrain.

Major tributaries to the Fox River in Lake County include the Chain O'Lakes, Sequoit Creek, Squaw Creek, Fish Lake Drain, Mutton Creek, Slocum Lake Drain, Tower Lake Drain and Flint Creek. The area around the Chain O'Lakes is substantially developed around the many lakes, while the middle of the watershed is experiencing an increase in suburbanization. The same can be said for the southern area of the watershed, which includes new development within estate and rural estate land use.

The Fox River watershed includes all or portions of the communities of Antioch, Barrington, Barrington Hills, Deer Park, Fox Lake, Fox River Grove, Grayslake, Hainesville, Hawthorn Woods, Island Lake, Lake Barrington, Lake Villa, Lake Zurich, Lakemoor, Mundelein, North Barrington, Port Barrington, Round Lake, Round Lake Beach, Round Lake Heights, Round Lake Park, Tower Lakes, Volo and Wauconda.

1.4.B Identifying Outfalls (BMP C.1)

An Outfall (is defined at 40 CFR 122.26(B)(9)) means a point source (as defined by 40 CFR 122.2) at the point where a municipal separate storm sewer discharges into a "receiving water". Open conveyances connecting two municipal storm sewers, or pipes, tunnels or other conveyances which connect segments of the same stream or other Waters of the United States are not considered Outfalls. For the purposes of this manual the following definitions shall be used:

Outfall: Storm sewer outlet, or other open conveyance point discharge location, that discharges into a Waters of the U.S, receiving stream or another MS4.

Regulated systems include the conveyance or system of conveyances including roads with drainage systems, municipal streets, catch basins, gutters, ditches, swales, manmade channels or storm sewers. High priority outfalls are defined, for the purpose of implementing this SMPP, as 24-inches or larger.

The outfall map should be revised to incorporate permitted outfalls associated with new developments. An outfall inventory should be performed every 5 years in conjunction with pre-screening efforts (Chapter 3.4.D.2); the focus of this effort is to search for new outfalls.

Measurable Goal(s):

- Maintain outfall inventory, searching for new outfalls every 5 years.
- Identify high priority outfalls

Figure 5: Significant Outfall Locations

1.5 Status of Waters

As can be seen on Figure 6 there are several impaired waters within and in the vicinity of the Village of Island Lake. The most recent 303(d) list may be found at http://www.epa.state.il.us/water/water-quality/index.html. Information regarding TMDLs may be found at http://www.epa.state.il.us/water/tmdl//.

Figure 6: Impaired Waters 2014 303d and 305b Reports by IEPA

Segment	Impaired DU	Potential Cause	Potential Source	TMDL Status
Fox River	Aquatic Life, Fish Consumption, Primary Contact, Secondary Contact	Vegetative cover, Chloride, Copper, Flow Regime Alterations, Sedimentation/ Siltation, Aquatic Algae, PCBs, Fecal Coliform	Hydrostructure Flow Modification, Habitat Modification, Road/Urban Runoff, Dam Impoundment	Stage 1
Griswold Lake	Aesthetic Quality	Phosphorous	Atmospheric Deposition (Toxics), Source	
Island Lake	Anknown			

At this time no TMDL requirements have been issued for receiving waters within the MS4. TMDL statuses will be reviewed as part of each year's annual reports. Upon issuance of a TMDL requirement, an implementation strategy or plan will be created and described in the annual report incorporated into the next SMPP revision.

1.6 Countywide Approach to NPDES Compliance

The Lake County Stormwater Management Commission (SMC) is a countywide governmental agency created by county ordinance under the authority of Illinois Revised Statute 55/5-1062. SMC's goals include the reduction of flood damage and water quality degradation. Another purpose of SMC is to assure that new development addresses nonpoint source pollution, does not increase flood and drainage hazards to others, or create unstable conditions susceptible to erosion. To accomplish this, the SMC works cooperatively with individuals, groups, and units of government as well as serving as the
corporate enforcement authority for the Lake County Watershed Development Ordinance. SMC enforces the Watershed Development Ordinance (WDO) in non-certified communities on behalf of the municipality. The municipality is responsible for enforcing the WDO in Certified Communities. A municipality is considered a Certified Community after its petition is approved by SMC. SMC utilizes technical assistance, education programs and watershed planning to increase public awareness of natural resources and the impacts of urbanization on stormwater quality. In addition, SMC provides solutions to problems related to stormwater and identifies effective ways of managing natural resources.

The General Permit allows for MS4s to take credit for activities being performed by a Qualifying Local Program (QLP) toward meeting its permit requirements. The Lake County Stormwater Management Commission (SMC) is a Qualifying Local Program for MS4s in Lake County. As part of their ongoing services, SMC performs some functions related to each of the six minimum control measures (MCM). SMC has been providing services under four of the six minimum control categories since it began implementing a comprehensive, countywide stormwater program in 1991. However, MS4s are required to provide additional services for each of the Minimum Control Measures with the greatest effort in the Illicit Discharge Detection and Elimination and Pollution Prevention/Good Housekeeping categories. A detailed discussion of the QLP program is described in Chapter 3.1.

2 Program Management

This Chapter describes the organizational structures of the Village, the County and IEPA. It further discusses the roles and responsibilities of the various involved parties.

2.1 Implementation of this SMPP

The SMPP includes detailed discussions on the types of tasks that are required to meet the permit conditions under the NPDES II program and how to perform these tasks. Appendix 5.10 includes related tracking forms. The tracking forms are broken out into three categories (based on the frequency of occurrence). There are three different tracking forms included: Annual, As-Needed and On-Going. These forms should be printed annually and the progress of all tasks tracked. At the end of the yearly reporting period (March 1 - February $28 / 29$) the forms should be filed in a binder to document SMPP related activities to IEPA, or their authorized agent, in the case of an audit. It is anticipated that implementation of this SMPP constitutes compliance with the program. The SMPP must be posted on the Village website.

Annual Reports, Monitoring Data, NOI and Stormwater Management Plans shall be kept for a minimum of 5-years after the expiration of this permit (March 1, 2022).

2.2 Intra-Department Coordination

The Board of Trustees is the policy and budget setting authority for the Village. The Director of Public Works and Water and the Village's consulting engineer work together to implement this SMPP. The Stormwater Coordinator has primary responsibility for managing the overall program.

2.2.A Stormwater Coordinator

The Director of Public Works and Water is the Stormwater Coordinator and is responsible for the oversight and implementation of this SMPP. The Stormwater Coordinator has many different responsibilities, he/she:

- is the lead contact for coordination with the Lake County Stormwater Management Commission, the Illinois Environmental Protection Agency, contractors, the development community and other external regulatory agencies;
- understands the requirements of ILR40, ensures that the SMPP meets the requirements of the permit and that the Village effectively implements the SMPP;
- ensures, or assists the Enforcement Officer in ensuring, that the Village complies with all minimum Watershed Development Ordinance (WDO) provisions;
- ensures that the Facilities comply with all minimum ILR40 permit requirements;
- is aware when a Project is required to be authorized under the ILR10 permit. In these cases the Stormwater Coordinator should ensure that the NOI is received by IEPA at least 30 days prior to the start of construction;
- assists the development community in understanding when a ILR10 permit is required and whether construction sites comply with the general ILR10 and WDO permit conditions; and
- understands the role illicit discharges play in the overall NPDES II program. In general, an incidence of non-compliance must be filed with IEPA for illicit discharges exiting an MS4's outfall into a receiving water. Additionally, if the illicit discharge is generated by a construction site, it may be necessary for both the applicant and the MS4 to file the ION form with IEPA.

Figure 7: Roles of MS4
provided by Gewalt Hamilton \& Associates

2.2.B Engineering Department

Engineering personnel support the Stormwater Coordinator in obtaining compliance with both the NDPES and WDO programs.

The Village Engineer is also the Enforcement Officer with respect to the administration and enforcement of the Lake County Watershed Development Ordinance (WDO). Additionally, the Enforcement Officer is responsible for performing inspections and monitoring the development. Review and inspection efforts can be performed by personnel under his/her direct supervision. A full description of the EO responsibilities is included in Appendix E of the WDO. The EO follows established procedures for notifying applicants of deficiencies and obtaining site compliance (i.e. enforcement). The EO has the responsibility to concur that projects meet WDO standards prior to the issuance of permits, and oversee site inspections during construction. Refer to Chapter 3.1.D, 3.1.E, 3.5 and 3.6 for additional information on this process.

2.2.C Public Works Department

Infrastructure maintenance activities within the MS4 are carried out by Public Works personnel. Public Works personnel are designated as the primary entity responsible for performing the duties specified under Chapter 3.4 Illicit Discharge Detection and Elimination and Chapter 3.7 Pollution Prevention and Good Housekeeping.

2.3 Coordination with Lake County Stormwater Management Commission

Coordination between the MS4 and the Lake County Stormwater Management Commission (SMC) occurs through both participation in the SMC sponsored MAC forums and through the Certified Community Status under the Lake County Watershed Development Ordinance (WDO). The MS4's Stormwater Coordinator is the lead contact for participation in the MAC forums.

SMC is the primary entity responsible for meeting Public Education and Outreach and Public Participation and Involvement MCMs. Additionally, SMC and has the lead responsibility for Construction Site Runoff Control and Post Construction Runoff Control MCMs in NonCertified Communities. If the MS4 is a Certified Community, the MS4's Enforcement Officer has lead responsibility for Construction Site Runoff Control and Post Construction Runoff Control MCMs.

2.4 Watershed Work Groups

2.4.A. 1 Fox River Study Group

The Fox River Study Group (FRSG) is a diverse coalition of stakeholders working together to assess water quality in the Fox River watershed. Participants include Friends of the Fox

River, Sierra Club, Fox River Water Reclamation District (Elgin), Fox Metro Water Reclamation District (Aurora), Fox River Ecosystem Partnership, Illinois Environmental Protection Agency (IEPA) and Blackberry Creek Watershed Plan Implementation Council as well as representatives from Algonquin, Aurora, Batavia, Crystal Lake, Elgin, Geneva, Island Lake, Kane County, Lake in the Hills, St. Charles and Yorkville.

The FRSG began meeting in the summer of 2001 to plan how to prepare for the upcoming Total Maximum Daily Load (TMDL) study on the river. A TMDL study is required by federal law because three segments of the Fox River appeared on the Illinois Environmental Protection Agency's list of impaired waters (the 1998 303(d) list). These segments, which lie between Holiday Hills and North Aurora, were listed because results from at least one water sample suggest there are water quality concerns. The most common concerns include low dissolved oxygen levels or high concentrations of fecal coliform bacteria. The 303(d) listing was updated in 2002, and now includes the entire length of the Fox River from the Wisconsin state line to the river's mouth at Ottawa with the most numerous causes listed as flow alteration, habitat alteration, low dissolved oxygen, nutrients, organic enrichment, PCBs, siltation or suspended solids.
The mission of the Fox River Study Group is to bring together a diverse coalition of stakeholders to work together to preserve and/or enhance water quality in the Fox River watershed.

The activities of the Fox River Study Group shall include, but are not limited to, the following:

- Participation in water quality monitoring efforts in the Fox River watershed;
- Development of a computer model of the Fox River watershed;
- Maintenance of the computer model as a management tool to promote efficient use of taxpayer and private money on watershed projects, assess the effect of various development options throughout the watershed, educate stakeholders, evaluate management priorities, identify sensitive regions within the watershed, develop continuing monitoring programs;
- Development of a plan to preserve and/or enhance the water quality of the Fox River; and
- Promotion, as needed, of the adoption of the watershed plan by appropriate entities who have the authority for its implementation.

Additional information and a copy of the Fox River Implementation Plan can be found at http://www.foxriverstudygroup.org/index.htm.

2.5 Coordination with Consultants

The MS4 may enlist the services of consultants to assist in the implementation of the WDO (including, but not limited to, plan review, site inspections and enforcement), and the design of MS4 projects.

2.6 Coordination of Contractors

The Village also has a responsibility to hire contractors who are knowledgeable of the applicable requirements of the ILR40 and ILR10 permits. Provide appropriate training, or require documentation that appropriate training has been attended, for all contractors responsible for municipal green infrastructures and ensure they are aware of good housekeeping/pollution prevention practices.

2.7 Coordination with the Public

Coordination with the Public occurs on several levels. In addition to the avenues described in this SMPP the Public has the opportunity to comment on proposed preliminary and final plats through the Plan Commission and Municipal Board process established in the Municipal Code.

2.8 Coordination with the IEPA

The Village is required to complete annual reports which describes the status of compliance with the ILR40 permit conditions and other related information as presented on the annual report template provided by the QLP. The annual report must be posted on the Village website and submitted to the IEPA by the first day of June each year. Annual reporting to IEPA should consist of "implemented SMPP" for all tasks completed in accordance with this SMPP. Additional information should be provided for areas of enhancement or tasks not completed.

Records regarding the completion and progress of the SMPP commitments must be kept by the community. The tracking form, described in Chapter 2.1, should be updated throughout the year. The completed forms should be located in a binder with necessary supporting documentation. The binder must be available for inspection by both IEPA and the general public.

2.9 Coordination with the Development Community

The Village has a responsibility to assist the development community in understanding when an ILR10 permit is required and whether construction sites comply with the general ILR10 and WDO permit conditions. The Village should understand the role illicit discharges play in the overall NPDES II program. In general, an incidence of non-compliance must be filed with IEPA for illicit discharges exiting an MS4's outfall into a receiving water. Additionally, if the illicit discharge is generated by a construction site, it may be necessary for both the applicant and the MS4 to file the ION form with IEPA.

Furthermore, the municipality has a responsibility to inform the development community that they are required to hire contractors which meet the qualifications necessary under the program, refer to Chapter 3.5.B for additional information on qualified personnel.

3 The Program

This Stormwater Management Program Plan includes six Minimum Control Measure (MCM) categories, each of which is necessary in an effort to reduce/eliminate stormwater pollution in receiving water bodies. The QLP role in addressing each MCM is described in Chapter 3.1. Additional MS4 efforts are described in the subsequent chapters. Chapter 3.2 describes the efforts to educate the public about stormwater pollution and stormwater pollution prevention. The manner in which the Village incorporates public participation and involvement into the SMPP is explained in Chapter 3.3. Chapter 3.4 describes the approach to detecting and eliminating stormwater illicit discharges. Construction and post construction runoff control is addressed in Chapters 3.5 and 3.6. Lastly, Chapter 3.7 discusses responsibilities for the care and upkeep of its general facilities, associated maintenance yards, and municipal roads and to minimize pollution. This chapter also discusses necessary training for employees on the implementation of the SMPP.

3.1 Qualified Local Program

SMC requires - through the Lake County Watershed Development Ordinance - local stormwater management programs to implement one or more of the minimum control measures specified in the Illinois Environmental Protection Agency's (Illinois EPA's) General NPDES Permit No. ILR40 (MS4 Permit), making it a Qualifying Local Program (QLP). Consistent with the County's comprehensive, countywide approach to stormwater management, as a QLP, SMC has been working since the early 2000's, when began the process of expanding its NPDES Stormwater Program to include small MS4s, to assist Lake County MS4s in developing and implementing efficient and effective stormwater management programs. Although SMC is not itself an MS4, as it does not own or operate a separate storm sewer system, it does perform activities related to each of the six minimum control measures (MCMs) described in Illinois EPA's General NPDES Permit No. ILR40. SMC remains committed to performing a variety of stormwater management activities across the County - which are described in more detail below - to provide Lake County with a baseline Countywide stormwater management program that can be built upon by each of the individual MS4s. In addition to the stormwater management activities described below, SMC program is continually evolving, to better assist Lake County MS4s in meeting the requirements of the new 2016 MS4 Permit.

Measurable Goal(s):

- Provide NOI template in accordance with 2016 ILR40s permit
- Provide yearly annual reporting template including a description of QLP activities for the applicable permit year.
- Research, compile, and make available information regarding receiving waters, impaired waters, pollutants causing such impairments, and the status of TMDL development on such waters. Expand the "State of Lake County Water's segment of the annual report template accordingly.
- Provide Stormwater Pollution Plan template for use Lake County MS4s.

3.1.A Public Education and Outreach

SMC will continue to support Lake County MS4s in the development and implementation of their stormwater management programs by performing activities related to the Public Education and Outreach MCM, as described below.

3.1.A. 1 Distributed Paper Material (BMP A.1)

SMC compiles, develops, and distributes throughout Lake County a variety of materials related to stormwater management. SMC has produced a number of pamphlets and brochures related to stormwater management and prepares a quarterly newsletter, "Mainstream," as well as an Annual Report, which highlight successful stormwater management activities conducted throughout Lake County. SMC also prepares project fact sheets that provide information about ongoing and recently completed stormwater management projects. In addition, SMC has developed or collaborated on a number of manuals related to stormwater management, such as "Riparian Areas Management: A

Citizen’s Guide," "A Citizen's Guide to Maintaining Stormwater Best Management Practices," and the "Streambank Stabilization Manual," and will continue to develop or collaborate on such manuals or manual updates on an as-needed basis.

Additionally, SMC researches and compiles materials related to stormwater management from a variety of sources including the QLP, IEPA, USEPA, Center for Watershed Protection, Chicago Metropolitan Agency for Planning "CMAP"(previously Northeastern Illinois Planning Commission "NIPC"), University of Wisconsin Extension, Solid Waste of Lake County (SWALCO) and other agencies and organizations. SMC is a clearing house for MS4 communities by making available the following types of materials available through their take-a-way rack or web-site:

- Informational sheets/pamphlets regarding storm water best management practices including cost-benefits and implementation guidance,
- Informational sheets/pamphlets regarding water quality best management practices,
- Informational sheets/pamphlets regarding construction site activities (soil erosion and sediment control best management practices),
- Storage and disposal of fuels, oils and similar materials used in the operation of or leaking from, vehicles and other equipment;
- Use of soaps, solvents or detergents used in the outdoor washing of vehicles, furniture and other property,
- Paint and related décor;
- Lawn and garden care; and
- Winter de-icing material storage and use.
- Informational sheets/pamphlets regarding green infrastructure strategies such as green roofs, rain gardens, rain barrels, bioswales, permeable piping, dry wells and permeable pavement.
- Informational sheets/pamphlets regarding the hazards associated with illegal discharges and improper disposal of waste and the manner in which to report such discharges.

Measurable Goal(s):

- Distribute informational materials from "take away" rack at SMC.
- Upon request, distribute informational materials directly to Lake County MS4s for local distribution.

3.1.A. 2 Speaking Engagement (BMP A.2)

SMC provides educational presentations related to IEPA's NPDES Stormwater Program on a regular basis at Municipal Advisory Committee (MAC) meetings. Upon request, SMC will
provide educational presentations related to IEPA's NPDES Stormwater Program to Lake County MS4s.

Measurable Goal(s):

- Provide educational presentations related to IEPA's NPDES Stormwater Program at MAC meetings.
- Upon request, provide educational presentations related to IEPA's NPDES Stormwater Program (e.g., "The Big Picture: Water Quality, Regulations \& NPDES") to Lake County MS4s.

3.1.A. 3 Public Service Announcement (BMP A.3)

A public service announcement related to IEPA's NPDES Stormwater Program will be included in SMC's quarterly newsletter, "Mainstream," at least once each year. SMC will coordinate with the Lake County Department of Transportation (LCDOT) to post watershed identification signage in watersheds where watershed planning or project implementation efforts have occurred or are occurring.

SMC also utilizes social media to reach out to additional target audiences. Both Facebook and Twitter feeds are updated to include relevant water quality information and promote educational opportunities across the County.

Measurable Goal(s):

- Include public service announcement related to IEPA's NPDES Stormwater Program in its quarterly newsletter, "Mainstream," at least once each year.
- Post watershed identification signage in cooperation and collaboration with LCDOT.
- Provide information via social media (Facebook and Twitter).

3.1.A. 4 Outreach Events (BMP A.4)

SMC regularly sponsors and co-sponsors educational and technical training workshops on a variety of stormwater management-related topics. Each year, SMC will sponsor or cosponsor at least one workshop on a topic related to IEPA's NPDES Stormwater Program, such as soil erosion and sediment control or stormwater best management practices (BMPs) that can be used to protect and improve water quality. SMC also offers an annual deicing workshop and a training workshop on green infrastructure practices; made available to both public employees and contractors.

Measurable Goal(s):

- Sponsor or co-sponsor workshop(s) on a topics related to IEPA's NPDES Stormwater Program.
- Track workshops and events.

3.1.A. 5 Classroom Education Material (BMP A.5)

Upon request, SMC will contribute to the development and compilation of materials for inclusion in a stormwater education kit that can distributed to local students and teachers and/or other local stakeholders. Additionally, upon request, SMC will provide information, materials, and training to local students and teachers and/or other local stakeholders interested in conducting storm drain stenciling.

Measurable Goal(s):

- Upon request, develop and compile materials for inclusion in a stormwater education kit.
- Upon request, provide information, materials, and training to local students, teachers and/or stakeholders interested in conducting storm drain stenciling.

3.1.A. 6 Other Public Education - Web Site (BMP A.6)

SMC maintains a website that contains a variety of materials and resources related to stormwater management. The website provide information about IEPA's NPDES Stormwater Program, provide information about stormwater best management practices (BMPs), allow for download of stormwater management-related publications and documents, provide notices of upcoming meetings and ongoing projects, includes watershed plans and watershed workgroup information, and provide links to a number of other stormwater management-related resources including materials described in 3.1.A.1.

SMC will research, compile and make available materials about the impacts of climate change on precipitation and stormwater runoff and the pollution prevention practices that can be used by private property owners, and an evaluation of the impacts of climate change on existing flood control techniques and practices used to achieve runoff volume reduction. A link to the USEPA's climate change website http://www3.epa.gov/climatechange is included on SMC's website.

Measurable Goal(s):

- Maintain and update the portion of the SMC website dedicated to IEPA's NPDES Stormwater Program with resources such as model ordinances, case studies, brochures, and links including information related to climate change.
- Make "The Big Picture: Water Quality, Regulations \& NPDES" presentation available to Lake County MS4s.

3.1.B Public Participation/Involvement

SMC will continue to support Lake County MS4s in the development and implementation of their stormwater management programs by performing activities related to the Public Participation/Involvement MCM, as described below.

3.1.B. $1 \quad$ Public Panel (BMP B.1)

SMC provides procedural guidance and implements its Citizen Inquiry Response System (CIRS) for receiving and taking action on information provided by the public regarding postconstruction stormwater runoff control. SMC coordinates and conducts public meetings as well as committee meetings that are open to the public. A monthly Stormwater Management Commission meeting is open to the public and involves the SMC Board of Commissioners, which includes six municipal representatives and six county board members.

The Technical Advisory Committee (TAC) was created in 1992 to assist in the development, review, and revision of the Watershed Development Ordinance (WDO) and the associated administrative policies and procedures. TAC is made up of representatives from the development, environmental, municipal, and consulting engineering fields. TAC meetings are held monthly or on an as-needed basis.

The Municipal Advisory Committee (MAC) is made up of municipal, township, drainage district, consulting firm, and county representatives. MAC has worked to discuss, coordinate, and collaborate on the implementation of IEPA's NPDES Stormwater Program. MAC will continue to meet quarterly or as needed to assist Lake County MS4s with the implementation of IEPA's NPDES Stormwater Program.

The Watershed Management Board (WMB) meets annually to make recommendations on stormwater BMP project funding. WMB members include chief municipal elected officials, township supervisors, drainage district chairs, and county board members from each district within each of Lake County's four major watersheds.

Measurable Goal(s):

- Implement and provide guidance on existing CIRS procedures.
- Provide notice of public meetings on SMC website.
- Track number of meetings conducted

3.1.B. 2 Stakeholder Meeting (BMP B.3)

SMC is actively involved in watershed planning throughout Lake County. SMC believes that the watershed planning process cannot happen and will not be successful without the input, interest, and commitment of the watershed stakeholders. Watershed stakeholders may include municipalities, townships, drainage districts, homeowner associations, lakes management associations, developers, landowners, and local, county, state, and federal agencies.

Measurable Goal(s):

- Provide notice of stakeholder meetings on SMC website.
- Track number of watershed committee meetings conducted.
- Establish watershed planning committees for each new watershed planning effort.

3.1.B. 3 Program Involvement (BMP B.6)

Consistent with Lake County's comprehensive, countywide approach to stormwater management, SMC serves as a Qualifying Local Program (QLP) for all Lake County MS4s. In this role, in 2002, SMC proactively formed the Municipal Advisory Committee (MAC) to provide a forum for representatives of local MS4s, which include municipalities, townships, and drainage districts, to discuss, among other topics, the implementation of IEPA's NPDES Stormwater Program. SMC will continue to facilitate quarterly MAC meetings and will continue to provide general support to Lake County MS4s as they continue to develop and implement their stormwater management programs. SMC will prepare an annual report on its stormwater management activities and will provide guidance to Lake County MS4s in preparing their own annual reports.

Measurable Goal(s):

- Track number of MAC meetings conducted.
- Prepare annual report template for use by Lake County MS4s including a description of the Qualifying Local Program stormwater management activities.
- Prepare SMPP template for use by Lake County MS4s in creating their own SMPP.

3.1.C Illicit Discharge Detection and Elimination

SMC will continue to support Lake County MS4s in the development and implementation of their stormwater management programs by performing activities related to the lllicit Discharge Detection and Elimination MCM, as described below. Note, however, that the primary responsibility for the implementation of the Illicit Discharge Detection and Elimination MCM lies with the MS4.

Measurable Goal(s):

- Continue to make available information regarding prioritization of outfalls for illicit discharge screening activities.
- Continue to make available compiled GIS data related to the County's existing stormwater infrastructure (e.g. storm sewer atlases, stream inventories and detention basin inventories).

3.1.C. 1 Regulatory Control Program (BMP C.2)

SMC provides local MS4s with model and example illicit discharge ordinances that prohibit all non-stormwater discharges, including illegal dumping, to the storm sewer system. Additionally, the WDO includes provisions that prohibit illicit discharges to the storm sewer system during construction (i.e., prior to final site stabilization) on development sites.

Measurable Goal(s):

- Provide model and example illicit discharge ordinances to Lake County MS4s.
- Continue to administer and enforce the WDO.

3.1.C. 2 Other Illicit Discharge Controls (BMP C.10)

SMC regularly sponsors and co-sponsors educational and technical training workshops on a variety of stormwater management-related topics. Each year, SMC will sponsor or cosponsor an illicit discharge detection and elimination workshop or other training workshop related to IEPA's NPDES Stormwater Program and track the number of attendees that attend the workshop as previously described in Chapter 3.1.A.4.

Additionally, as part of its public education and outreach efforts, SMC distributes informational materials throughout Lake County about the hazards associated with illegal discharges and the improper disposal of waste.

As described in Chapter 4.1 the Lake County Health Department's Lake Management unit performs extensive monitoring of inland lakes and Lake Michigan Beaches. Upon receiving a request for service, LMU staff investigates possible pollution sources, fish kills and other lake or pond related inquires throughout the county. Although the Lakes Management Unit is not an enforcement agency, they direct non-jurisdictional issues to appropriate agencies for enforcement, if necessary.

Measurable Goal(s):

- Sponsor or co-sponsor and track the number of attendees at an Illicit Discharge Detection and Elimination workshop or other training workshop related to IEPA's NPDES Stormwater Program.
- Distribute informational materials about the hazards of illicit discharges and illegal dumping from "take away" rack at SMC and SMC website.

3.1.D Construction Site Runoff Control

The goal of the Lake County Watershed Development Ordinance (WDO) is to ensure that new development does not increase existing stormwater problems or create new ones. The WDO establishes countywide standards for runoff maintenance, detention sites, soil erosion and sediment control, water quality, wetlands and floodplains. These provisions are only applicable for regulated development activities as defined by the WDO. Applicants that hydrologically disturb greater than 1 -acre are also required to seek coverage under the statewide construction general permit by filing a Notice of Intent (NOI) with IEPA.

The WDO is implemented primarily at the local level. The majority of the fifty-three municipalities in the county were "Certified Communities." The designation allows those communities to enforce WDO standards within their own jurisdictions. Note, however, that the primary responsibility for the implementation of the Construction Site Runoff Control MCM in certified communities (i.e., communities certified by SMC to administer and enforce the provisions of the WDO) lies with the MS4.

SMC will continue to support Lake County MS4s in the implementation of the Construction Site Runoff Control MCM by administering and enforcing the WDO and performing other
stormwater management activities, as described below. SMC administers the WDO and issues permits for the developments within the Non-Certified Communities.

3.1.D.1 Regulatory Control Program (BMP D.1)

The WDO is the regulatory mechanism that requires the use of soil erosion and sediment controls on development sites throughout Lake County. The soil erosion and sediment control provisions are included in Article 6 of the WDO. At a minimum, these standards apply to any development project that hydrologically disturbs 5,000 square feet of land or more.

SMC has also created a Designated Erosion Control Inspector (DECI) program. The purpose of the program is to facilitate positive communication between the permit issuing agency, whether such agency be SMC or a certified community, and the permit holder, by creating a single point of contact for the discussion and resolution of site soil erosion and sediment control issues and concerns. Furthermore, the program is intended to improve site conditions, minimize environmental impacts, and educate contractors, developers, and inspectors about the use of soil erosion and sediment control BMPs. It is worth noting that the DECI program was designed to closely mirror the inspection requirements of IEPA's General NPDES Permit No. ILR10. Measurable Goal(s):

- Continue to administer and enforce the WDO.
- Continue to administer the Designated Erosion Control Inspector (DECI) program outlined by the WDO.

3.1.D. 2 Erosion and Sediment Control BMPs (BMP D.2)

§600 of the WDO specifies the soil erosion and sediment control measures that must be used in conjunction with any land disturbing activities conducted on a development site. Ordinance provisions include but are not limited, to the following:

- Grading, soil erosion and sediment control plan. The plan must:
- Minimize soil disturbance
- Prevent discharge of sediment from the site through the implementation of soil erosion control practices, primarily, and sediment control secondarily
- Protect receiving waters, natural areas and adjacent properties from damage which may result from the proposed grading
- complete installation of soil erosion and sediment control features prior to commencement of hydrologic disturbance
- stabilize disturbed areas within 7 days of active disturbance
- avoid disturbance of streams whenever possible
- use controls that are appropriate for the size of the tributary drainage area
- protect functioning storm sewers from sediment
- prevent sediment from being tracked onto adjoining streets
- limit earthen embankments to slopes of 3H:1V
- identify soil stockpile areas
- utilize statewide standards and specifications as guidance for soil erosion and sediment control.
- Waste control;
- Runoff Volume Reduction Hierarchy and Water Quality;
- Established inspection duties for the applicant and procedures for inspections;
- Record keeping and reporting procedures;
- Security deposits to ensure faithful performance;
- Enforcement measures to achieve compliance; and
- One year warranty period, for applicable developments.

SMC has maintains technical guidance documents to accompany the WDO. The guidance documents and the Illinois Urban Manual 2014 are used to guide the creation of development plans that are in compliance with the provisions of the WDO and provides detailed information on the use of soil erosion and sediment control BMPs.

As part of the permit review process, applicants that hydrologically disturb greater than 1acre are also required to seek coverage under the statewide construction general permit by filing a Notice of Intent (NOI) with IEPA. During construction, applicants are required to submit to IEPA Incidence of Noncompliance (ION) forms, as necessary. After the site is substantially stabilized, the applicant is required to submit a Notice of Termination (NOT).

Measurable Goal(s):

- Continue to administer and enforce the WDO.
- Continue to maintain technical guidance documents.

3.1.D. 3 Other Waste Control Program (BMP D.3)

The WDO includes several provisions that address illicit discharges generated by construction sites. The applicant is required to prohibit the dumping, depositing, dropping, throwing, discarding or leaving of litter and construction material and all other illicit discharges from entering the stormwater management system.

Measurable Goal(s):

- Continue to administer and enforce the provisions of the WDO related to the control of waste and debris during construction on development sites.

3.1.D. 4 Site Plan Review Procedures (BMP D.4, E.4)

A community's designated enforcement officer is responsible for reviewing and permitting development plans and for administering and enforcing the provisions of the WDO. Within certified communities (i.e., communities certified by SMC to administer and enforce the provisions of the WDO), responsibility for reviewing and permitting development plans and for administering and enforcing the provisions of the WDO lies with the MS4; within noncertified communities, the designated enforcement officer is SMC's chief engineer. All designated enforcement officers must pass an exam in order to qualify to act as such. SMC administers this enforcement officer program, providing training on an as-needed basis to all enforcement officers to assist them in passing the exam, and maintains an up-to-date list identifying each community's designated enforcement officer. In addition to administering the enforcement officer program, SMC periodically reviews each community's WDO administration and enforcement records, using the results of such review to evaluate the performance of certified communities and designated enforcement officers.

SMC maintains technical guidance documents to accompany the WDO. These documents are used to guide the creation of development plans that are in compliance with the provisions of the WDO and provides additional guidance on the administration and enforcement of the ordinance.

Measurable Goal(s):

- Administer the Enforcement Officer (EO) program outlined by the WDO.
- Maintain an up-to-date list identifying each community's designated enforcement officer.
- Periodically review each community's WDO administration and enforcement records.
- Continue to maintain technical guidance documents.

3.1.D.5 Site Inspection/Enforcement Procedures (BMP D.6, E.5)

Article 5 of the WDO contains both recommended and minimum requirements for the inspection of development sites. Within certified communities, the community's designated enforcement officer is responsible for conducting these inspections; within non-certified communities, SMC's chief engineer is responsible for conducting these inspections. Per the ordinance, these inspections may be conducted by a community's designated enforcement officer at any stage in the construction process. For major developments, as defined by the WDO, the enforcement officer conducts site inspections, at a minimum, upon completion of installation of soil erosion and sediment controls, prior to the start of any other land disturbing activities, and after final stabilization and landscaping, prior to the removal of soil erosion and sediment controls.

Article 12 of the WDO specifies the legal actions that may be taken and the penalties that may be imposed if the provisions of the WDO are violated. If development activities on a development site are not in compliance with the requirements of the WDO, the enforcement officer may issue a stop work order on all development activity on the development site or on the development activities that are in direct violation of the WDO. In addition, failure to
comply with any of the requirements of the WDO constitutes a violation of the WDO, and any person convicted of violating the WDO may be fined.

Measurable Goal(s):

- Document and track the number of site inspections conducted by SMC.

3.1.D. 6 Public Information Handling Procedures (BMP D.5)

SMC provides a number of opportunities for the receipt and consideration of information submitted by the public. SMC's Citizen Inquiry Response System (CIRS) documents and tracks the resolution of problems and complaints reported by the public. SMC's website provides information on "who to call" for various stormwater-related problems and concerns. An Interagency Coordination Agreement between SMC, the US Army Corps of Engineers, and the National Resources Conservation Service specifies that if any of these agencies receive a report of a soil erosion and sediment control issue, they will relay such report to SMC. SMC will then investigate the report and prescribe appropriate corrective actions, sharing the results of such investigation with the property owner and any applicable local, state, or federal agencies. Within certified communities, such investigations are coordinated with the community's designated enforcement officer.

Measurable Goal(s):

- Document and track the number of soil erosion and sediment control-related complaints received and processed by SMC.

3.1.E BMP Reference Information

Reference information includes, but is not limited to, the following sources:

- Native Plant Guide,
- Lake County SMC's Technical Reference Manual,
- Illinois Urban Manual, 2014
- SMC's
- soil erosion and sediment checklist,
- soil erosion and sediment control notes,
- typical construction sequencing,
- Construction details are available on the website,
- Chicago Metropolitan Agency for Planning (previously Northeastern Illinois Planning Commission) Course Manuals,
- IDOT manuals,
- Center for Watershed Protection documents, and
- IEPA and USEPA publications.

3.1.F Post-Construction Runoff Control

As described above, Lake County has adopted a countywide Watershed Development Ordinance (WDO) that establishes the minimum stormwater management requirements for development in Lake County, including requirements for post-construction runoff control. SMC will continue to support Lake County MS4s in the implementation of the PostConstruction Runoff Control MCM by administering and enforcing the WDO and performing other stormwater management activities, as described below. Note, however, that the primary responsibility for the implementation of the Post-Construction Runoff Control MCM in certified communities (i.e., communities certified by SMC to administer and enforce the provisions of the WDO) lies with the MS4.

3.1.F.1 Regulatory Control Program (BMP E.2)

The WDO requires all applicants to adopt stormwater management strategies for controlling post-construction stormwater runoff on development sites. As outlined in Se 5 of the WDO, all applicants must adopt stormwater management strategies that minimize increases in stormwater runoff rates, volumes, and pollutant loads from development sites. Proposed stormwater management strategies must address the runoff volume reduction requirements described in §503 of the WDO and must include appropriate stormwater BMPs to address the other applicable post-construction runoff control requirements of the WDO.

Measurable Goal(s):

- Continue to administer and enforce the WDO.

3.1.F. 2 Long Term O\&M (BMP E.3)

The WDO requires that maintenance plans be developed for all stormwater management systems designed to serve major developments, as defined by the WDO. Such maintenance plans must include: a description of all maintenance tasks; an identification of the party or parties responsible for performing such maintenance tasks; a description of all permanent maintenance easements or access agreements, overland flow paths, and compensatory storage areas; and a description of dedicated sources of funding for the required maintenance. The WDO also requires that all stormwater management systems be located within a deed or plat restriction (e.g., easement) to ensure that the system remains in place in perpetuity and that access to the system is maintained in perpetuity for inspection and maintenance purposes.

Concerns related to a completed development or re-development shall be route to the Enforcement Officer, or designee. Site inspections and/or follow-up maintenance recommendations will be made to the property owner on a case by case basis.

Measurable Goal(s):

- Continue to administer and enforce the WDO.

3.1.F. 3 Runoff Volume Reduction Hierarchy (BMP E.4)

As described above, a community's designated enforcement officer is responsible for reviewing and permitting development plans and for administering and enforcing the provisions of the WDO. This includes a review of the stormwater BMPs that will be used to meet the post-construction runoff control requirements of the WDO. Developments that exceed the thresholds identified in the WDO are required to quantify the RVR provided by the site design, including a combination of structural and/or non-structural BMPs that will reduce the discharge of pollutants, the volume and velocity of storm water flow to the maximum extent practicable. The permittee should ensure that the development plan addresses these provisions during the plan review process. The WDO was written to specifically address the following ILR40 permit requirements.

Each permittee is also required to adopt strategies that incorporate storm water infiltration, reuse and evapotranspiration of storm water into the project to the maximum extent practicable in accordance with the qualitative RVR provisions of the WDO. Types of techniques include green roofs, rain gardens, rain barrels, bioswales, permeable piping, dry wells and permeable pavement.

Measurable Goal(s):

- Continue to administer and enforce the WDO.

3.1.F. 4 Other Post-Construction Runoff Controls (BMP E.7)

Through the Watershed Management Board (WMB), SMC provides partial funding for flood damage reduction and surface water quality improvement projects. The WMB, which includes representatives from the Lake Michigan, North Branch of the Chicago River, Fox River, and Des Plaines River watersheds, meets annually to review potential projects and to make recommendations on stormwater BMP project funding. Members of the WMB include chief municipal elected officials, township supervisors, drainage district chairmen, and county board members from each district found within each of Lake County's four major watersheds. The goal of the WMB program is to maximize opportunities for local units of government and other groups to have input and influence on the solutions used to address local stormwater management problems. Previous WMB-funded projects have reduced flooding, improved surface water quality, and enhanced existing stormwater management facilities throughout Lake County.

Measurable Goal(s):

- Conduct annual WMB meeting.
- Contribute funding to flood damage reduction and water quality improvement projects through the WMB.

3.1.G Pollution Prevention / Good Housekeeping

SMC will continue to support Lake County MS4s in the development and implementation of their stormwater management programs by performing activities related to the Pollution Prevention/Good Housekeeping MCM, as described below. Note, however, that the primary responsibility for the implementation of the Pollution Prevention/Good Housekeeping MCM lies with the MS4.

3.1.G. 1 Employee Training Program (BMP F.1)

SMC will assist Lake County MS4s with the development and implementation of their employee training programs by maintaining a list of known employee training resources and opportunities, making available a software-based employee training program, and providing, upon request, technical assistance to local MS4s in developing and implementing their employee training programs. The Center for Watershed Protection's URSM Manual 9: Municipal Pollution Prevention Practice is a key resource. In addition, each year, SMC will sponsor or co-sponsor training workshops as previously described in Chapter 3.1.A.4.

Measurable Goal(s):

- Maintain a list of known employee training resources and opportunities.
- Make available the Excal Visual Storm Watch: Municipal Storm Water Pollution Prevention software-based employee training program.
- Sponsor or co-sponsor a training workshop related to pollution prevention/good housekeeping or another training workshop related to IEPA's NPDES Stormwater Program.

3.1.G. 2 Flood Management / Assess Guidelines (BMP F.5)

In working toward meeting its primary goals of flood damage reduction and surface water quality improvement, SMC follows a set of stormwater management policies that were created to define its roles and responsibilities for stormwater management in Lake County. One of these policies is to integrate multi-objective opportunities (e.g., flood damage reduction, surface water quality improvement, environmental enhancement) into SMCsponsored projects. In accordance with this policy, SMC will evaluate all SMC-sponsored projects for multi-objective opportunities.

Measurable Goal(s):

- Track number of SMC-sponsored projects that are reviewed for multi-objective opportunities.

3.1.G. 3 Winter Roadway Deicing (BMP F.6)

Measurable Goal(s):

- Advise MS4 communities of watershed groups addressing issues associated with the use of chlorides (i.e. road salt).

3.1.H Watershed Plans

SMC has collaborated on a number of watershed based plans throughout the County. Watershed plans are implemented by SMC and local communities and organizations as plan recommended best management practices and projects are fleshed out with designs and budgets and funding is secured.

These plans were created in part to identify opportunities for watershed communities to integrate multi-objective watershed management in community decisions and activities; establish an inventory of stormwater and pollutants; and to improve degraded conditions in the watershed by implementing best management practices and programs to retrofit existing flood control techniques and problem areas and prevent future problems from occurring. The adoption of these Plans will guide the successful implementation of a series of individual site-specific projects and watershed-wide programmatic actions to: improve water quality, reduce flood damage potential, protect and enhance natural resources including the watershed's lakes, streams and wetlands; and in addition, will provide watershed education and recreation opportunities and improve community cooperation and participation in watershed improvement activities.

The creation and adopted watershed based plans were completed on a voluntary basis and not to meet any ILR40 permit requirements. However, implementation of individual sitespecific projects or programmatic actions without the use of 319 funding can be cited by an MS4 community toward meeting ILR40 permitting requirements. The status of the County's watershed planning efforts is depicted on Figure 8 below.

Des Plaines River Watershed

The Lake County Stormwater Management Commission (SMC) has completed watershed management plans for the Indian Creek, Bull Creek/Bull's Brook, North Mill Creek-Dutch Gap Canal, Mill Creek, and Buffalo Creek sub-watersheds, and is currently developing an umbrella watershed-based plan for the entire Des Plaines watershed in Lake County that will be completed in 2018.

Fox River Watershed

Watershed management plans have been completed for the Fish Lake Drain, Flint, Mutton, Sequoit, Slocum, Squaw and Tower Lake Drain, subwatersheds. The Sequoit and Squaw watershed plans are older and do not meet the current EPA requirements for an approved watershed-based plan.

North Branch of the Chicago River Watershed

Completed watershed plans include the North Branch of the Chicago River WatershedBased Plan, North Branch Chicago River Open Space Plan and the Skokie River Headwaters/North Chicago Flood Damage Reduction Study.

Lake Michigan Watershed

Watershed-based plans have been completed and approved for the Dead River Kellogg Creek, and Waukegan subwatersheds. Extensive ravine and stream inventories have been completed for the entire Lake Michigan Watershed, excluding stream segments in the coastal plain of Illinois Beach State Park.

Figure 8: Watershed Based Plan Status

3.2 Public Education and Outreach

In additional to the extensive QLP efforts, which are described in more detail in Chapter 3.1, the Village Lake Management Committee utilizes a variety of methods to educate and provide outreach to the public about the importance of managing pollutants that potentially could enter the stormwater system. The program includes the following activities which are discussed in greater detail in this chapter.

- Distribute information sheets regarding stormwater BMP, water quality BMP, and proper hazardous waste use and disposal.
- Maintain a water quality/stormwater section in the Village newsletter.
- Attend/sponsor outreach activities to homeowners / property owner associations, commercial / industrial facilities, schools, and other events.
- Coordinate, publicize, and participate in bi-annual SWALCO events.
- Maintain website which offers links to additional educational information, and ways to contact Village personnel.
- Advise on the potential impacts and effects on stormwater discharge due to climate change http://epa.gov/climatechange.

3.2.A Distribution of Paper Materials (BMP A.1)

In addition to the QLP's efforts to obtain and distribute informational materials throughout Lake County, the Village provides contact information on outreach publications to encourage residences to report environmental concerns and distributes the following additional types of materials:

- The "Guidelines for Draining Swimming Pools" door hanger,
- The "Protect Our Water" door hanger,
- Informational sheets/pamphlets regarding the hazards associated with illegal discharges and improper disposal of waste and the manner in which to report such discharges.
- Informational sheets/pamphlets published by SWALCO regarding proper hazardous waste use and disposal, and

Publications are provided in the following manner:

- At take-a-away racks,
- At outreach events,
- The municipal newsletter, a quarterly publication,
- At Earth Day/Green Day events held in the community, and
- At scheduled meetings with the general public. These meetings are on an as needed or as requested basis and may be with the home owners associations, businesses, or local schools.

Measurable Goal(s):

- Support QLP efforts.
- Distribute informational materials from "take away" racks and other appropriate forms.

3.2.B Other Public Education - Web Site (BMP A.6)

In addition to the QLP's efforts to distribute information via its website, which are described in more detail in Chapter 3.1.A.6, maintain a website that contains materials and resources related to stormwater management. The website includes a webpage that provides information about IEPA's NPDES Stormwater Program, information about the stormwater management program, including its SMPP, NOI, Permit, Annual Report and Green Practices, and links to a number of other stormwater management-related resources, including the Lake County Stormwater Management Commission's (i.e., QLP's) website.

Measurable Goal(s):

- Maintain and update the portion of the website dedicated to its stormwater management program including links to SMC, IEPA and SWALCO.
- Post SMPP, the NOI and current Annual Report and previous 5 Annual Reports on the website.

3.2.C Outreach Events (BMP A.4)

In addition to the QLP's efforts to sponsor or co-sponsor workshops and provide educational presentations, which are described in more detail in Chapter 3.1, when possible attend and/or sponsors outreach events and scheduled meetings with the general public on stormwater management-related topics. Events sponsored by the QLP often offer the opportunity to share information and facilitate a collective focus on potential solutions to the challenges faced by the County, Villages, and other stakeholders. These events are held on an as needed or as requested basis. Audiences may include the home owners associations, lake associations, businesses, and neighborhood groups.

Measurable Goal(s):

- Support QLP efforts.

3.2.D Storm Drain Stenciling \& Markers (BMP A.6)

The Village supports the efforts of private entities to stencil or apply stickers to inlets, and their purchase of factory stamped inlet grates. Stamped or stenciled inlets assist in educating the public about stormwater runoff pollution. Efforts may include:

- Providing the "Guide to Storm Drain Marking" (by SMC) to Home Owners Associations, school groups etc. that express interest.
- Requiring all new development to furnish stamped inlet grates.
- Encouraging Home Owners Associations to annually paint the embossed area, of any stamped inlet grates within the subdivision.
- Instituting a program to add "stickers" or other markers to existing inlets through the use of municipal staff or private groups.

Measurable Goal(s):

- Support QLP and private efforts.

3.2.E Household Hazardous Wastes (BMP A.4)

The average garage contains a lot of products that are classified as hazardous wastes, including paints, stains, solvents, used motor oil, pesticides and cleaning products. While some household hazardous waste (HHW) may be dumped into storm drains, most enters the storm drain system as a result of outdoor rinsing and cleanup. Improper disposal of HHW can result in acute toxicity to downstream aquatic life. The desired neighborhood
behavior is to participate in HHW collection days, and to use appropriate pollution prevention techniques when conducting rinsing, cleaning and fueling operations.

Support the efforts of the Solid Waste Agency of Lake County (SWALCO) to implement programs throughout Lake County. There programs are aimed at reducing our reliance on landfills through source reduction, recycling and energy recovery. In general, the programs help residents dispose of problem wastes, such as household chemicals, electronic equipment, and yard waste. Their recycling programs are targeted at both commercial and residential markets in order to divert as much solid waste as possible from reaching landfills. They also administer a public information and education program including the "Earth Flag" and "Earth Flag Every Day" programs in the schools, promoting SWALCO events, and publishing various resources and public service announcements. As part of these waste management efforts, SWALCO:

- Conduct dozens of household hazardous chemical waste and electronic collection events each year at various locations throughout the county.
- Mass media campaigns to educate residents about proper outdoor cleaning/ rinsing techniques
- Conventional outreach materials notifying residents about HHW and collection days
- Providing curbside disposal options for some HHW
- Providing mobile HHW pickup

Measurable Goal(s):

- Support and publicize SWALCO efforts.

3.2.F Vehicle Fluid Maintenance (BMP A.6)

Dumping of automotive fluids into storm drains can cause major water quality problems, since only a few quarts of oil or a few gallons of antifreeze can severely degrade a small stream. Dumping delivers hydrocarbons, oil and grease, metals, xylene and other pollutants to streams, which can be toxic during dry-weather conditions when existing flow cannot dilute these discharges. The major culprit has been the backyard mechanic who changes
his or her own automotive fluids. The Village may utilize a range of tools to minimize illicit discharges:

- Outreach materials distributed at auto parts store and service stations
- Community oil recycling centers
- Directories of used oil collection stations
- Free or discounted oil disposal containers
- Pollution hotlines
- Fines and other enforcement actions

Measurable Goal(s):

- Promote safe vehicle maintenance through previously described BMPs: Distribution of Paper Materials (Chapter 3.2.A), Web Site (Chapter 3.2.B) and Outreach Events (Chapter 3.2.C)

3.2.G Car / Outdoor Washing (BMP A.6)

Car washing is a common neighborhood behavior that can produce transitory discharges of sediment, nutrients and other pollutants to the curb, and ultimately the storm drain. Communities have utilized many innovative outreach tools to promote environmentally safe car washing, including:

- Media campaign
- Brochures promoting nozzles with shut off valves
- Storm drain plug and wet vac provisions for charity car wash events
- Water bill inserts promoting environmentally safe car washing products
- Discounted tickets for use at commercial car washes

Measurable Goal(s):

- Promote safe car washing through previously described BMPs: Distribution of Paper Materials (Chapter 3.2.A), Web Site (Chapter 3.2.B) and Outreach Events (Chapter 3.2.C)

3.2.H Lawn and Garden Care (BMP A.6)

Our yards are our outdoor homes: fun, beautiful, great spaces for relaxing. Fertilization decisions should be based on the nutritional and growth requirements of plant and the soil conditions. Adding unneeded fertilizer in the yard does not benefit plants and could end up in the storm water system or polluting streams, lakes, and aquifers. By taking care of our lawns and gardens properly, we can save money, time and help the environment. Green Scaping encompasses a set of landscaping practices that can improve the health and
appearance of your lawn and garden while protecting and preserving natural resources. This is further described in EPA's Green Scaping Publication.
https://www.epa.gov/sites/production/files/2014-04/documents/greenscaping the easy way to a greener healthier yard.pdf

Measurable Goal(s):

- Promote healthy lawn care through previously described BMPs: Distribution of Paper Materials (Chapter 3.2.A), Web Site (Chapter 3.2.B) and Outreach Events (Chapter 3.2.C)

3.2.I Green Infrastructure (BMP A.6)

Encourage residents' use of storm water infiltration, reuse and evapotranspiration of storm water practices on their properties. Types of techniques include green roofs, rain gardens, rain barrels, bioswales, permeable piping, dry wells and permeable pavement.

Measurable Goal(s):

- Promote the use of green infrastructure on private property through previously described BMPs: Distribution of Paper Materials (Chapter 3.2.A), Web Site (Chapter 3.2.B) and Outreach Events (Chapter 3.2.C)

3.2.J Pool Dewatering (BMP A.6)

Chlorinated water discharged to surface waters, roadways or storm sewers has an adverse impact on local stormwater quality. High concentrations of chlorine are toxic to wildlife, fish and aquatic plants. The pH of the water should be between 6.5 and 8.5 . Algaecides such as copper or silver can interrupt the normal algal and plant growth in receiving waters and should not be present when draining. Prepare appropriately before draining down a pool. It is recommended that one of the following measures be used:

1) De-chlorinate the water in the pool prior to draining through mechanical or chemical means; these types of products are available at local stores.
2) De-chlorinate the water in the pool through natural means. Pool water must sit at least 2 days with a reasonable amount of sun, after the addition of chlorine or bromine. It is recommended that the chlorine level be tested after 2 days to ensure that concentrations are at a safe level (below $0.1-\mathrm{mg} / \mathrm{l}$).
3) Drain the pool slowly over a several day period across the lawn; or drain directly into the sanitary sewer using the following additional guidelines:
a) Avoid discharging suspended particles (e.g. foreign objects blown into the pool like leaves, seedlings, twigs etc) with pool water.
b) When draining your pool, do not discharge directly onto other private properties or into public right-of-way including storm sewer inlets.

Measurable Goal(s):

- Promote safe pool dewatering through previously described BMPs: Distribution of Paper Materials (Chapter 3.2.A), Web Site (Chapter 3.2.B) and Outreach Events (Chapter 3.2.C). Efforts should be targeted each fall, preferably September and may incorporate the use of Pool Dewatering Fact Sheet (Appendix 5.11).

3.3 Public Participation and Involvement

The public participation and involvement program allows input from citizens during the development and implementation of the SMPP.

3.3.A Public Review Process (BMP B.1)

In addition to the QLP's efforts to coordinate and conduct public meetings as well as committee meetings that are open to the public throughout Lake County, the Village presents each year's annual report to the Board during an open meeting and provide for input from the public as to the adequacy of the permittee's MS4 program. Comments are evaluated for inclusion and incorporated into the next revision of the SMPP as appropriate.

Measurable Goal(s):

- Present each year's annual report to the Board during an open meeting and provide for input from the public as to the adequacy of the permittee's MS4 program.
- Support QLP efforts.

3.3.A. 1 Environmental Justice Areas

Environmental justice is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.
EPA has this goal for all communities and persons across this nation. It will be achieved when everyone enjoys:

- the same degree of protection from environmental and health hazards, and
- equal access to the decision-making process to have a healthy environment in which to live, learn, and work.
"Potential" EJ communities have been identified based on IEPA guidance to include communities with a low-income and/or minority population greater than twice the statewide average. In addition, a community may be considered a potential EJ community if the lowincome and/or minority population is less than twice the state-wide average but greater than the statewide average and that has identified itself as an EJ community. If the low-income and/or minority population percentage is equal to or less than the statewide average, the community should not be considered a potential EJ community. The following web application is another resource that can be used to determine if an area would qualify for consideration as an environmental justice community. https://ejscreen.epa.gov/mapper/index.html.

Measurable Goal(s):

- Identify EJA, if any, within the community and ensure that BMP efforts are targeted at these areas.

3.3.A. 2 Complaints, Suggestions and Requests (BMP B.7)

The Village encourages the submission of complaints, suggestions and requests related to its stormwater program. Calls are screened, logged and routed to the appropriate department for action. General program related calls are directed to the Stormwater Coordinator, or designee. Construction activity related telephone calls are directed to the Enforcement Officer, or designee

Measurable Goal(s):

- Encourage submission of complaints, suggestions and requests by publicizing contact information on previously described BMPs: Distributed Paper Materials (Chapter 3.2.A.) and on the Website (Chapter 3.2.B).

3.3.B Illicit Discharge/Illegal Dumping Hotline (BMP B.7)

The community maintains, operates and publicizes a call in phone number where parties can contact the Village with environmental concerns. Primary advertisement venues include the website and all related municipal publications.

Measurable Goals):

- Log reports on the Indirect Illicit Discharge Tracking Form (Appendix 5.7).
- Investigate potential illicit discharges

3.3.C Adopt-A-Highway (BMP B.7)

The Village, in cooperative partnership with the IDOT, supports Adopt-A-Highway Programs for state roadways within the municipal limits. The objective of the program is to improve and promote the image of the entire community by reducing potential illicit discharges. Participation meets the Program Policy and Safety Guidelines established by IDOT in a separate document.

Measurable Goals):

- Support the Adopt-A-Highway Program

3.4 Illicit Discharge Detection and Elimination,

Currently, illicit discharges (defined in 40 CFR 122.26(B)(2)) contribute considerable pollutant loads to receiving waters. There are two primary situations that constitute illicit discharges; these include non-stormwater runoff from contaminated sites and the deliberate discharge or dumping of non-stormwater. Illicit discharges can enter the storm sewer system as either an indirect or direct connection.

Program objectives and procedures for the identification and removal of direct connections of pollutants into the storm water management systems (including wetlands and receiving waters) are included in this manual. Step-by-step instructions for identifying storm sewers suspected of containing pollutants, suggestions for actions to be taken to determine the sources of identified pollutants, and steps for correcting identified problems are provided. The results of the procedures presented in this manual are intended to serve as indicators of pollution, rather than to provide specific quantitative analysis. If the presence of pollutants is indicated, the detective work of identifying the source of the discharge can begin. Once the source is identified, it can then be corrected.

3.4.A Regulatory Authority (BMP C.2)

Effective implementation of an IDDE program requires adequate legal authority to remove illicit discharges and prohibit future illicit discharges. This regulatory authority is achieved through adoption of the Lake County Watershed Development Ordinance (WDO) and the local IDDE Ordinance. Additionally, IEPA has regulatory authority to control pollutant discharges and can take the necessary steps to correct or remove an inappropriate discharge over and above MS4 jurisdiction.
${ }_{1}$ Chapter 3.5 is a revision of the Lake Michigan Watershed Stormwater Outfall Screening Program Training Program (April 1994 by SMC), and incorporates material from the Illicit Discharge Detection and Elimination: A Guidance Manual for Program Development and Technical Assessments (October 2004 by the Center for Watershed Protection and Robert Pitt, University of Alabama).

3.4.A. 1 Watershed Development Ordinance

Several provisions of the Lake County Watershed Development Ordinance (WDO) prohibit illicit discharges as part of the development process. These provisions are only applicable for regulated development activities as defined by the WDO. Regulated developments are required to meet the soil erosion and sediment control standards of the WDO. Furthermore, the WDO requires that the applicant prohibit illicit discharges into the stormwater management system generated during the development process.

The WDO allows the Village of Island Lake to require inspection deposits, performance bonds, and to adopt/enforce violation procedures. These tools assist in achieving complaint construction sites. These items are further discussed in Chapters 3.1.D, 3.1.E, 3.5 and 3.6.

Measurable Goal(s):

- Support QLP efforts.
- Enforce Watershed Development Ordinance

3.4.A. 2 Illicit Discharge Ordinance

The Village created and adopted an Illicit Discharge Ordinance. The Ordinance is the mechanism to allow for the execution and enforcement of the SMPP and is enforced.

Measurable Goal(s):

- Enforce Illicit Discharge Ordinance

3.4.A. 3 Subdivision and Public Utility Ordinance

The Village created and adopted Subdivision and Public Utility Ordinances. These Ordinances are administered by the Building and Engineering Departments and can be used to further support the activities required by the SMPP.

Measurable Goal(s):

- Enforce Subdivision and Public Utility Ordinance

3.4.A. 4 Regulation of Fertilizer Containing Phosphorus

The Village Lake Management Committee has discussed amending Village Code to include regulations pertaining to the application of fertilizers, by Commercial and Non-Commercial Applicators, including homeowners and renters, from applying any fertilizer which contains any amount of phosphorus/phosphate except as noted in the code. Additionally consideration could be probibition of fertilizer in drainage ditches, waterways or within twenty feet therefor and any delineated wetland or designated buffer area.

Measurable Goal(s):

- Consider Ordinance Revisions

3.4.B Understanding Outfalls and Illicit Discharges

Understanding the potential locations and the nature of illicit discharges in urban watersheds is essential to find, fix and prevent them.

3.4.B. 1 Potential Sources of Illicit Discharges

Inspecting storm water outfalls during dry-weather conditions reveals whether non-storm water flows exist. If non-storm water flows are observed, they can be screened and tested to determine whether pollutants are present.

There are two primary situations that constitute illicit discharges; these include non-storm water runoff from contaminated sites and the deliberate discharge or dumping of non-storm water. Deliberate discharge or dumping can enter the storm sewer system in two ways:

- direct connections - through direct piping connections to the storm sewer system, and
- indirect connections - through subtle connections, such as dumping or spillway of materials into storm sewer drains.

Direct connections are more likely to result in continuous pollutant discharges than indirect connections, which often produce limited, intermittent discharges of pollutants. USEPA guidance indicates that direct connections to storm sewer systems most likely originate from commercial/industrial facilities. Thus, the focus of this manual is the identification of illicit discharges from commercial/industrial facilities.

3.4.B.2 Exclusions

It is noted that not all dry-weather flows are considered inappropriate discharges. Under certain conditions, the following discharges are not considered inappropriate by USEPA or IEPA:

- Water line flushing,
- Landscaping irrigation,
- Diverted stream flows,
- Rising groundwaters,
- Uncontaminated groundwater infiltration,
- Uncontaminated pumped groundwater,
- Discharges from potable water sources,
- Flows from foundation drains,
- Air conditioning condensation,
- Irrigation water,
- Springs,
- Water from crawl spaces,
- Lawn watering,
- Individual car washing,
- Flows from riparian habitats and wetlands,
- Dechlorinated swimming pool water, and
- Street wash water.
- Discharges from dewatering activities, if managed by appropriate controls as specified in a project's SMPP, erosion and sediment control plan, or stormwater management plan.

3.4.B. 3 Prohibited Discharges

It is noted the following non-stormwater discharges are prohibited by the ILR40 permit:

- Concrete and wastewater from washout of concrete (unless managed by an appropriate control),
- Drywall compound,
- Wastewater from washout and cleanout of stucco
- Paint
- Form release oils
- Curing compounds and other construction materials
- Fuels
- Oils or other pollutants used in vehicle and equipment O\&M,
- Soaps, solvents, or detergents,
- Toxic or hazardous substances from a spill or other release
- Any other pollutant that could cause or tend to cause water pollution

3.4.B. 4 Pollutant Indicators

3.4.B.4.a Physical Pollutant Indicators

Adapted from New Hampshire Estuaries Project and the IDDE Guidance Manual by the Center for Watershed Protection.

Odor

Water is a neutral medium and does not produce odor; however, most organic and some inorganic chemicals contribute odor to water. Odor in water may originate from municipal and industrial waste discharges, from natural sources such as decomposition of vegetative matter, or from associated microbial activity.

Table 1: Odor or Potential Illicit Discharges (adapted from CWP)

Odor	Possible Cause
Sewage	Wastewater treatment facilities, domestic waste connected into storm drain, failing septic system
Sulfide (rotten eggs)	Decaying organic waste from industries such as meat packers, dairies and canneries
Rancid/sour	Many chemicals, including pesticides and fertilizers, emit powerful odors that may produce irritation or stinging sensations.
Petroleum/gas	Industry associated with vehicle maintenance or petroleum product storage; gas stations
Laundry	Laundromat, dry cleaning, household laundry

Color
Color is a numeric computation of the color observed in a water quality sample, as measured in cobalt-platinum units. Both industrial liquid wastes and sewage tend to have elevated color values. Unfortunately, some "clean" flow types can also have high color values. A color value higher than 500 units may indicate an industrial discharge.

Table 2: Color of Potential Illicit Discharges (adapted from CWP)

Water Color	Possible Cause	Images
Brown Water - water ranging in color from light-tea to chocolate milk; it may have a rotten egg odor.	Human causes may be eroded, disturbed soils from constr. sites, animal enclosures, destabilized stream banks and lake shore erosion due to boat traffic.	Human causes may include textile facilities, chemical plants or pollen.
Yellow -	Human causes may be illicit lonnections of domestic wastewater; untreated septic system discharge; illegal boat discharge; and parking lot runoff.	
Gray Water - water appears milky and may have a rotten egg smell and/or soap odor. There may also be an appearance of cottony slime.	leser	

Green Water - ranging from blue green to bright green color and may impart odor. Conditions typically occur from May to October.	Human causes may be over- fertilizing lawns, boat discharges, septic systems, agriculture operations, or discharging poorly treated wastewater.	
Orange/Red -	Human causes may include meat packing facilities or dyes.	
Green Flecks - resembling floating blue-green paint chips or grass clippings. These Blooms and are potentially toxic.	Human cause is excessive nutrients. Fertilizers used on lawns can contaminate surface and ground water.	

Table 2 (continued)

Water Color	Possible Cause	Images
Green Hair-Like Strands - bright or dark green, resembling cotton candy and often in floating mats.	Human causes are excessive nutrients from fertilizers or failed on-shore septic systems.	
Multi-Color Water	Human causes include oil or hazardous waste spill, paint and paint equipment rinsed into - various or	
uniform color,		
other than brown,		
green or gray. For		
rainbow sheen see		
systems.		

Turbidity

Turbidity is a measure of the clarity of water. Turbidity may be caused by many factors, including suspended matter such as clay, silt, or finely divided organic and inorganic matter. Turbidity is a measure of the optical properties that cause light to be scattered and not transmitted through a sample. The presence of turbidity is to be assessed by comparing the sample to clean glass sample container with colorless distilled water.

Turbidity and color are related terms but are not the same. Remember, turbidity is a measure of how easily light can penetrate through the sample bottle, whereas color is defined by the tint or intensity of the color observed.

Figure 9 Turbidity Severity Examples
(adapted from CWP)

Floatables

The presence of sewage, floating scum, foam, oil sheen, or other materials can be obvious indicators of an illicit discharge. However, trash originating from areas adjacent to the outfall is this section.

- If you think the floatable is sewage, you should automatically assign it a severity score of three since no other source looks quite like it.
- Suds are rated based on their foaminess and staying power. A severity score of three is designated for thick foam that travels many feet before breaking up. Natural foam breaks apart easily, can be brown, black or yellowish and may smell fishy or musty.
- Surface oil sheens are ranked based on their thickness and coverage. In some cases, surface sheens may not be from oil discharges, but instead created by in-stream processes. A petroleum sheens doesn't break apart and quickly flows back together.

Figure 10 Natural Sheen versus Synthetic (adapted from CWP)

Sheen from natural bacteria forms a swirl-like film that cracks if disturbed

Synthetic oil forms a swirling pattern

Table 3: Floatables in Potential Illicit Discharges (adapted from CWP)

Floatables	Human causes include connection of domestic wastewater, leaking sanitary sewers or failing septic systems.
Sewage	Common human causes of unnatural foam include leaking sewer lines, boat discharges, improper sewer connections to storm sewers and detergents from car washing activities.
Suds and Foam -	Human causes may include leaking underground storage tank or illegal dumping.
Petroleum (oil sheen)	Common human causes include overflow from sanitary systems (due to clogging from grease) and illegal dumping.

3.4.B.4.b Chemical Pollutant Indicators

Ammonia

Ammonia is a good indicator of sewage, since its concentration is much higher there than in groundwater or tap water. High ammonia concentrations ($>50 \mathrm{mg} / \mathrm{l}$) may also indicate liquid wastes from some industrial sites. Ammonia is relatively simple and safe to analyze. Some challenges include the potential generation of wastes from non-human sources, such as pets or wildlife.

Potential ID NH3-N: $>0.1 \mathrm{mg} / \mathrm{L}$
Chlorine

Chlorine is used throughout the country to disinfect tap water, except where private wells provide the water supply. Chlorine concentrations in tap water tend to be significantly higher than most other discharge types. Unfortunately, chlorine is extremely volatile, and even moderate levels of organic materials can cause chlorine levels to drop below detection levels. Because chlorine is non-conservative, it is not a reliable indicator, although if very high chlorine levels are measured, it is a strong indication of a water line break, swimming pool discharge, or industrial discharge from a chlorine bleaching process.

Concentrations of copper in dry-weather flows can be a result of corrosion of water pipes or automotive sources (for example, radiators, brake lines, and electrical equipment). The occurrence of copper in dry-weather flows could also be caused by inappropriate discharges from facilities that either use or manufacture copper-based products. A copper value of $>0.025-\mathrm{mg} / \mathrm{L}$ indicates an industrial discharge is present.

Industrial sources of copper include the following:

- Copper manufacturing (smelting),
- Copper metal processing/scrap remelting,
- Metal plating,
- Chemicals manufacturing,
- Analytical laboratories,
- Power plants,
- Electronics,
- Wood preserving, and
- Copper wire production.

In each of these industries, wastes containing copper would normally be discharged to a treatment facility. Sludge from the waste treatment facility, whether on-site (including lagooning) or publicly operated treatment facilities, would contain copper. If the sludge (or the treatment process) is not managed properly, copper could enter the storm sewer system.

Detergents

Most illicit discharges have elevated concentration of detergents. Sewage and wash water discharges contain detergents used to clean clothes or dishes, whereas liquid wastes contain detergents from industrial or commercial cleansers. The nearly universal presence of detergents in illicit discharges, combined with their absence in natural waters or tap water, makes them an excellent indicator. Research has revealed three indicator parameters that measure the level of detergent or its components-- surfactants, fluorescence, and surface tension. Surfactants have been the most widely applied and transferable of the three indicators. Fluorescence and surface tension show promise, but only limited field testing has been performed on these more experimental parameters; therefore these are not tested. Refer to Boron and Surfactants descriptions.

E. coli, Enterococci and Total Coliform

Each of these bacteria is found at very high concentrations in sewage compared to other flow types, and is a good indicator of sewage or seepage discharges, unless pet or wildlife sources exist in the subwatershed. Overall, bacteria are good supplemental indicators and can be used to find "problem" streams or outfalls that exceed public health standards.

Potential ID Range: Fecal Coliform $>2,000 \mathrm{mg} / \mathrm{L}$ indicates waste water contamination. Potential ID Range: E. coli bacteria > 1,000/100 ml indicates waste water contamination.

Fluoride, at a concentration of two parts per million, is added to drinking water supplies in most communities to improve dental health. Consequently, fluoride is an excellent conservative indicator of tap water discharges or leaks from water supply pipes that end up in the storm drain. Fluoride is obviously not a good indicator in communities that do not fluorinate drinking water, or where individual wells provide drinking water. Fluoride levels greater than $0.6-\mathrm{mg} / \mathrm{L}$ indicate a potable water source is connected to the stormwater system.

Phenol

Phenol is a very commonly occurring chemical and can be found in foods, medicines, and cleaning products, as well as industrial products and by-products. Generally, the appearance of phenols in stormwater would indicate a misconnected industrial sewer to a storm drain or ditch. Exceptions would include runoff from treated wood storage yards (for example, treated lumber and telephone poles) and improper disposal (flash dumping) of cleaning products. A phenol value greater than $0.1-\mathrm{mg} / \mathrm{L}$ indicate an illicit discharge is present.

Industrial sources of phenol include the following:

- Chemical manufacturing (organic),
- Textile manufacturing,
- Paint and coatings manufacturing,
- Metal coating,
- Resin manufacturing,
- Tire manufacturing,
- Plastics fabricating,
- Electronics,
- Oil refining and re-refining,
- Naval stores (turpentine and other wood treatment chemicals),
- Pharmaceutical manufacturing,
- Paint stripping (for example, automotive and aircraft),
- Military installations (rework and repair facilities),
- Coke manufacturing,
- Iron production, and
- Ferro-alloy manufacturing.

Other sources of phenol include improper handling and disposal of cleaning compounds by institutions such as hospitals and nursing homes.

Most discharge flow types are neutral, having a pH value around 7, although groundwater concentrations can be somewhat variable. pH is a reasonably good indicator for liquid wastes from industries, which can have very high or low pH (ranging from 3 to 12). The pH of residential wash water tends to be rather basic (pH of 8 or 9). The pH of a discharge is very simple to monitor in the field with low cost test strips or probes. Although pH data is often not conclusive by itself, it can identify problem outfalls that merit follow-up investigations using more effective indicators.

Potential ID Range: <6.5 and > 8.5

Phosphorus

Phosphorus is recognized as the controlling factor in plan and algae frown. Small increases in phosphorus can fuel substantial increases in aquatic plant and algae grown. In addition to reducing the recreational use of the water body the increased plant and algae growth lowers dissolved oxygen levels. Low dissolved oxygen levels often results in the death of
certain fish, invertebrates and other aquatic animals, reduce recreational use, property values and public health. A key source of phosphorus comes from runoff pollution, as rain or melting snow wash over fertilized areas or manure.

Potential ID Range: >1 mg/L
Potassium

Potassium

Atomic Number: 19
Atomic Mass: 39.10

Potassium is found at relatively high concentrations in sewage, and extremely high concentrations in many industrial process waters. Consequently, potassium can act as a good first screen for industrial wastes, and can also be used in combination with ammonia to distinguish wash waters from sanitary wastes. An ammonium to potassium ratio of >1 or <1indicate waste water or wash water discharge respectively. A potassium value of >20mg / l is a good indicator for industrial discharges.

Surfactants

Surfactants are the active ingredients in most commercial detergents, and are typically measured as Methyl Blue Active Substances (or MBAS). They are a synthetic replacement for soap, which builds up deposits on clothing over time. Since surfactants are not found in nature, but are always present in detergents, they are excellent indicators of sewage and wash waters. The presence of surfactants in
cleansers, emulsifiers and lubricants also makes them an excellent indicator of industrial or commercial liquid wastes. A surfactant value of $>0.25-\mathrm{mg} / \mathrm{L}$ within residential areas indicates that either a sewage or wash water is present in the stormwater; a value of $>5-\mathrm{mg} / \mathrm{L}$ within non-residential areas indicates that there is an industrial discharge (refer to Table 46 from the Illicit Discharge Detection and Elimination manual by the Center for Watershed Protection for use in determining industrial flow types).

3.4.C Indirect Connection Program (BMP C.3)

Indirect connections are subtle connections, such as dumping or spillage of materials into storm sewer drains. Flash dumping is a common type of indirect connection. Generally, indirect modes of entry produce intermittent or transitory discharges, with the exception of groundwater seepage. There are five main modes of indirect entry for discharges.

Upon observing or receiving notification of a potential illicit discharge, the Illicit Discharge Incident Tracking Form, found in Appendix 5.7 is used to log and investigate the incident. Appropriate procedures found within this chapter are implemented in the event an illicit discharge has been confirmed.

Measurable Goal

- Track efforts related to indirect illicit discharges.

3.4.C. 1 Groundwater Seepage

Seepage discharges can be either continuous or intermittent, depending on the depth of the water table and the season. Groundwater seepage usually consists of relatively clean water that is not an illicit discharge by itself, but can mask other illicit discharges. If storm drains are located close to sanitary sewers, groundwater seepage may intermingle with diluted sewage. Addressing seepage that is observed during the outfall screening process is described in more detail in this chapter.

3.4.C. 2 Spills

These transitory discharges occur when a spill travels across an impervious surface and enters a storm drain inlet. Spills can occur at many industrial, commercial and transport-
related sites. A very common example is an oil or gas spill from an accident that then travels across the road and into the storm drain system. The Spill Response Plan is described in Chapter 3.7.B.

3.4.C. 3 Dumping

Dumping a liquid into a storm drain inlet: This type of transitory discharge is created when liquid wastes such as oil, grease, paint, solvents, and various automotive fluids are dumped into the storm drain. Liquid dumping occurs intermittently at sites that improperly dispose of rinse water and wash water during maintenance and cleanup operations. A common example is cleaning deep fryers in the parking lot of fast food operations. The Storm Drain Stenciling, Household Hazardous Wastes, Vehicle Fluid Maintenance and Pool Dewatering programs are designed to minimize dumping; these programs were previously described in Chapter 3.2. The procedure for handling a dumping incident is described in Chapter 3.7.B.2.

3.4.C. 4 Outdoor washing activities

Outdoor washing may or may not be an illicit discharge, depending on the nature of the generating site that produces the wash water. For example, hosing off individual sidewalks and driveways may not generate significant flows or pollutant loads. On the other hand, routine washing of fueling areas, outdoor storage areas, and parking lots (power washing), and construction equipment cleanouts may result in unacceptable pollutant loads. Individual washing activities are addressed through the Public Education and Outreach Program in Chapter 3.2 whereas observed/documented routine washing activities should be addressed through the Removal of Illicit Discharges Procedure in Chapter 3.4.D.4.

3.4.C. 5 Non-target irrigation from landscaping or lawns

Irrigation can produce intermittent discharges from over-watering or misdirected sprinklers that send tap water over impervious areas. In some instances, non-target irrigation can produce unacceptable loads of nutrients, organic matter or pesticides. The most common example is a discharge from commercial landscaping areas adjacent to parking lots connected to the storm drain system. This type of discharge is addressed by the Public Education and Outreach Program in Chapter 3.2.I.

3.4.D Direct Connection Illicit Discharge Program (BMP C. 3 - C.8)

Direct connections enter through direct piping connections to the storm sewer system, and since direct connections exist regardless of whether or not a stormwater event (e.g. rain or melting snow) is occurring, they are most easily detected during dry-weather periods. Inspection of stormwater outfalls during dry-weather conditions reveals whether nonstormwater flows exist. If non-stormwater flows are observed, they can be screened and tested to determine whether pollutants are present. If the presence of pollutants is indicated, the detective work of identifying the source of the discharge can begin. Once the source is identified, it can then be corrected. A direct connection illicit discharge program consists of three principal components: 1) outfall inspection, and 2) follow-up investigation and 3) removal.

3.4.D. 1 Program Planning

Program Planning involves the office work, planning, and organization required to conduct outfall screening and follow-up investigative activities of the program. This includes the identification of the staffing and equipment needed to conduct the outfall screening and scheduling inspection activities. Program planning also identifies the regulatory authority to remove directly connected illicit discharges and the identification of the outfalls and receiving waters in the municipality (both discussed earlier in this chapter).

> Staffing

Equipment Acquisition

3.4.D.1.a STAFFING

Personnel for an outfall inspection screening program are required for program administration, effort for conducting the outfall screening, and any follow-up investigations. Typically, a two-member crew is required for the outfall screening and follow-up portions of the program.

Equipment Needs

General field equipment and specialized outfall screening equipment are required for IDDE programs. The method of collecting and managing inspection screening data is driven by available technology. A complete list of recommend equipment and supplies is found on Stormwater Outfall Screening Equipment Checklist (Appendix 5.2). Field Crews carry basic safety items, such as cell phones, surgical gloves, and first aid kits. Additional safety precautions are described following the Equipment Checklist,

3.4.D.1.b Scheduling

Perform all pre-screening and follow-up inspections preceding a dry-weather period, a period of 72 hours of dry weather. A period of 72 hours is selected to allow local detention facilities to drain and local groundwater flows to recede after precipitation events. However, some judgment may be exercised in evaluating the 72 -hour period to sampling. For example, if very light rain or drizzle occurred and no runoff was experienced, it is likely that dry-weather conditions would exist and outfall inspection could be conducted.

Pre-Screening:

Pre-screening is on-going, in coordination with the outfall inventory, refer to Chapter 3.4.D.2.a. High priority dry weather flow locations will be identified in 2016, in accordance with the new ILR40 permit. It is recommended that all outfalls be rescreened in 2022 and every 5 years thereafter.

Pre-screening should generally take place during the late summer or fall months, ideally in August, September, or October, although other summer months may be acceptable, depending on weather conditions. This time period is generally warm, which improves field efficiency as well as reliability and consistency of field-testing. This time period is also more likely to have extended dry periods with little or no precipitation, which is required for the inspection activities.

Outfall Inspections:

Upon completion of the pre-screening efforts, review collected data to identify outfalls with observed dry weather flow or other indicators of an illicit discharge, refer to Chapter 3.4.D.2.b. Schedule outfall inspections so that all identified outfalls with potential illicit discharges are investigated within the following 5 -years, ensuring that outfalls with the greatest potential for the presence of an illicit discharge are investigated first. Annual inspection of all high priority outfalls, as identified in Chapter 1.4.A, is required.

3.4.D.2 Outfall Inspection (BMP C.3)

The identification of potential illicit discharge locations is primarily a two part process, prescreening and follow-up inspections. Pre-screening is performed by a rapid inspection of all outfalls in a pre-determined area such as along a receiving water. Follow-up inspections are required for those pipes found to have dry weather flow. Once probable illicit discharges are found, identify the sources of illicit discharges and correct per the removal procedure of Chapter 3.4.D.4. Outfall inspection consists of the following tasks:
(1) Pre-Screening
(2) Outfall Inspection, and
(3) Outfall Assessment and Documentation.

3.4.D.2.a Pre-Screening

Pre-screening consists of a rapid inspection of outfalls, during dry weather flow conditions. During pre-screening basic information should be obtained for each outfall.
Recommended information includes basic data about the structure (such as size, shape, material, condition), presence of dry weather flow determination and a photograph. The Outfall Inventory was previously described in Chapter 1.4.A

Measurable Goal

- Pre-screen outfalls and search for new outfalls, repeat every five years.

3.4.D.2.b OutFall InsPECTION

An outfall inspection is required for those outfalls identified during pre-screening inspections with dry weather flow or other indicators of a potential illicit discharge. The intent is to gather additional information to determine if an illicit discharge is present. Upon arriving at an outfall, the field crew should inspect the outfall by approaching the outfall on foot to a proximity that allows for visual observations to be made. Outfalls should be screened to determine which one of the three following conditions applies:

- The outfall is dry or damp with no observed flow,
- Flowing discharges are observed from the outfall, or
- The outfall is partially or completely submerged with no observed flow or is inaccessible.

The field crew should photograph the outfall and complete applicable sections of the Storm Water Outfall Inspection Data Form, Appendix 5.3. The need for on-site testing and obtaining grab samples for laboratory analysis is determined by using the flow chart as
guidance. Testing results are used to identify potential sources. Instructions for Completing the Storm Water Outfall Inspection Data Form and an associated Outfall Inspection Procedure Flow Chart (used to identify applicable sections of the form that must be filled out) are included in Appendix 5.3. Initial testing results are NOT intended to document the event for future removal and/or enforcement actions. If the initial testing results identify a potential illicit discharge, proceed to the follow-up investigation procedures discussed in Chapter 3.4.D.3.

Locating an upstream sampling point may be required if any of the following conditions exist at an outfall:

- The outfall discharge is submerged or partially submerged due to backwater conditions,
- Site access and safety considerations prevent sample collection,
- Other special considerations.

Make reasonable efforts to location upstream sampling location(s) using the available storm sewer atlas and development plan information. Manholes, catch basins, or culvert crossings can be used for upstream sampling locations. If no dry weather flow is present (i.e. the submerged outfall is based solely on a backwater condition, follow the above Scenario 1 procedure. If dry weather flow is identified in an upstream manhole, follow the above Scenario 2 procedure. If the upstream manhole(s) are inaccessible, resolve the problem in the office with appropriate supervisory personnel.

Measurable Goal

- Inspect outfalls identified during pre-screening inspections with dry weather flow or other indicators of a potential illicit discharge over a 5-year period.
- Inspect all high priority outfalls, as identified in Chapter 1.4.A annually.

Figure11: Characterizing Submersion and Flow
Center for Watershed Protection

3.4.D.2.c OutFall AsSESSment and Documentation

Complete the Storm Water Outfall Inspection Data Form (Appendix 5.3) for all outfall screening and grab sampling activities. All completed forms must be dated, legible, and contain accurate documentation of each outfall inspection. A separate data form must be completed for each outfall. It is recommended that non-smearing pens be used to
complete the forms and that all data be objective and factual. Once completed, these data forms are considered accountable documents and are maintained as part of the municipality's files. In addition to standard information, the data form is used to record other information that is noted at the time the outfall inspection is conducted. For example, observations of dead or dying plants, fish kills, algal blooms (excessive algae growth), construction activities, and other activities that might provide information regarding the potential for illicit connections or inappropriate discharges should be recorded on the form.

Measurable Goal

- Document all outfall inspections.

Figure 12: Outfall Inspection Procedure Flow Chart

3.4.D.3 Follow Up Investigation and Program Evaluation (BMP C.4)

Measurable Goal

- Continue investigation for outfalls identified through outfall inspection efforts to have a potential illicit discharge.

3.4.D.3.a Outfall Screening Results Review and Assessment

Follow up inspections are required for outfalls identified to have potential illicit discharges during the outfall inspection procedure. This is accomplished by reviewing the Stormwater Outfall Inspection Data Forms (Appendix 5.3) collected during outfall investigations to determine which outfalls require a follow up investigation, target sewer system areas (using available mapping and atlas information) for detailed investigation.

3.4.D.3.b Independent Verification

If the initial outfall assessment identifies potential illicit discharges (through either the on-site of off-site testing procedures), additional sampling is required. The results of the
inspection and testing should be discussed with the Stormwater Coordinator. Contract an independent laboratory to take and test an additional sample and verify preliminary finding. Use the established procedure to coordinate the independent laboratory sample and testing.

3.4.D.3.c Source Identification

Follow up investigation is required for all outfalls with positive indicators for pollutant discharges during the pre-screening efforts.

Mapping and Evaluation (BMP C.1)

For each outfall to be investigated, a large-scale working map should be obtained (digitally or in paper form) that includes the entire upstream storm sewer network, outfall locations and parcel boundaries indicated. This map product is based on information from the storm sewer atlas and outfall inventory. Land use information is evaluated to determine the types of residential, commercial, and industrial areas that might contribute the type of pollution identified at the outfall. Make attempts to match detected indicators with upstream activities.

Storm Sewer Investigation

After conducting the mapping evaluation, a manhole-by-manhole inspection is conducted to pinpoint the location of the inappropriate discharge, into the storm sewer / conveyance system. This inspection requires a field crew to revisit the outfall where the polluted dry-weather discharge was detected. The field crew should be equipped with the same testing and safety equipment and follow similar procedures as used during the outfall inspection.

After confirming that dry-weather flow is present at the outfall, the field crew continues moving to the next upstream manhole or access point investigating for dry weather flow. In cases where more than one source of dry-weather discharge enters a manhole, the field crew records this information on the screening form and then tracks each source separately. All sources are tracked upstream, manhole-by-manhole, until the dryweather discharge is no longer detected. Finally, the last manhole where dry-weather flow is present is identified and potential sources to that manhole are accessed. This data is important for source identification.

The field crew should also determine whether there has been a significant change in the flow rate between manholes. If the flow rate appears to have changed between two manholes in the system, the illicit connection likely occurs between the two manholes. Changes in the concentration of pollutant parameters could also aid in confirming the presence of an illicit connection between the two manholes.

Tracing

Once the manhole inspection has identified the reach area, between two manholes suspected of containing an inappropriate discharge, testing may be necessary. If there is only one possible source to this section of the storm sewer system in the area, source identification and follow-up for corrective action is straightforward. Multiple sources, or non-definitive sources, may require additional evaluation and testing in order to identify the contributing source. The method of testing must be approved by the Director of Public Works prior to testing. Potential testing methods include fluorometiric dye testing, smoke testing, and/or remote video inspections. Once identified, clearly log the contributing source.

3.4.D. 4 Removal of Illicit Discharges (BMP C.5)

Removal of illicit discharge connections is required at all identified contributing sources. Eight steps are taken to definitively identify and remove an inappropriate discharge to the storm sewer system. These steps are as follows:

Step 1. Have an outside laboratory service take a grab sample and test for the illicit discharge at the manhole located immediately downstream of the suspected discharge connection.

Step 2: Conduct an internal meeting with appropriate personnel including Public Works Personnel, Public Works Director, Code Enforcement Officer, and Stormwater Coordinator to discuss inspection and testing results and remedial procedures.

Step 3: \quad The Village shall send a notification letter to the owner/operator of the property/site suspected of discharging a pollutant. The letter should request that the owner/operator describe the activities on the site and the possible sources of non-stormwater discharges including information regarding the use and storage of hazardous substances, chemical storage
practices, materials handling and disposal practices, storage tanks, types of permits, and pollution prevention plans.

Step 4: \quad Arrange a meeting for an inspection of the property with Public Works Personnel, the Code Enforcement Officer, and the owner/operator of the property where the pollution source is suspected. Most illicit connections and improper disposal can probably be detected during this step. Notify the site owner/operator of the problem and instruct them to take corrective measures.

Step 5: \quad Conduct additional tests as necessary if the initial site inspection is not successful in identifying the source of the problem. The Director of Public Works is responsible for determining the appropriate testing measure to pinpoint the source.

Step 6: If the owner/operator does not voluntarily initiate corrective action, the Code Enforcement Office issues a notification of noncompliance. The notification includes a description of the required action(s) a time frame in which to assess the problem and take corrective action. Upon notification of noncompliance, the owner can be subject to any penalties stipulated in the IDDE Ordinance.

Step 7: Conduct follow-up inspections after stipulated time frame has elapsed to determine whether corrective actions have been implemented to: 1) remove the illicit connection or 2) eliminate the improper disposal practice.

Step 8: If corrective actions have been completed (i.e. and the illicit discharge has been eliminated) the Village sends a notification of compliance letter to the owner/operator of the property/site suspected of discharging a pollutant.

If corrective actions have not been completed an additional internal meeting with appropriate municipal personnel (likely including involved Public Works personnel, Director of Public Works, Code Enforcement Officer, and Stormwater Coordinator) is held to determine appropriate steps to obtain compliance. Appropriate actions may include monetary or other penalties.

Measurable Goal

- Administer Removal Procedures for outfalls with illicit discharges.

3.5 Construction Site Runoff Control

Development is subject to the provisions of the Lake County Watershed Development Ordinance (WDO).

3.5.A Regulatory Program (BMP D.1)

In addition to the QLP efforts described above, the Village has adopted the Lake County Watershed Development Ordinance (WDO) and is currently a Certified Community for the review, permitting, inspection and enforcement of the provisions of the WDO. The community designates an Enforcement Officer; this person is responsible for the administration and enforcement of the WDO. The Village has created an Inspection and Violation Notification Procedure to ensure compliance with the WDO.

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.5.B Responsible Parties (BMP D.1)

3.5.B. 1 Applicant

The applicant is ultimately responsible for ensuring compliant soil erosion and sediment control measures on-site during construction. General contractors, sub-contractors and other hired employees of the applicant can assist the applicant in maintaining a compliant site; however the applicant remains the responsible party. The applicant is also responsible for obtaining all other required state and federal permits, including an NOI with IEPA and upholding all permit conditions (including completing inspection logs).

3.5.B. 2 DECI - Designated Inspectors

As previously described in Chapter 3.1.D.1. the purpose of the DECI program is to facilitate positive communication between the Village and the permit holder by creating a single point of contact for soil erosion/sediment control issues with the idea that it is easier to prevent soil erosion and sediment control problems than it is to correct them after they
have occurred. Further, the program is intended to improve site conditions, minimize environmental impacts, and educate contractors/developers/inspectors about proper soil erosion/sediment control Best Management Practices.

The applicant, for sites that exceed the WDO thresholds per $\S 601$ are required to hire or employ a Designated Erosion Control Inspector (DECI).

- All development with 10 acres or more of hydrologic disturbance
- All development with 1 acre or more of hydrologic disturbance and regulatory floodplain or wetlands on site or on adjoining properties.

The DECI can work for the permittee's contractor, subcontractor, consultant, etc. He does not have to be a direct employee of the permittee. SMC keeps a list of DECIs that have been approved.

The DECI has the responsibility to conduct inspections as required, document inspections, keep inspections and project plans available on site, report noncompliance issues promptly, recommend soil erosion/sediment control measures. Assuming the DECI is competently completing these steps, the DECI is considered to meet the requirements of the program. Ultimately, liability for a development in noncompliance may fall to the owner, the applicant, the contractor, the developer, the DECI, or anyone else involved as determined on a case by case basis.

Sites that do not require a DECI may still require a designated inspector under the NPDES Il permit process. Significant efforts have been made to minimize overlap between the two programs. Currently all sites with greater than 1-ac or more of hydrologic disturbance require a permit from IEPA and a designated inspector (which is more stringent than the DECI requirements). A designated inspector, under the IEPA program, does not need to be a DECI recognized by SMC; however a DECI can fulfill both rolls. However, the site inspection logs can typically meet the permit conditions of both the WDO and the IEPA.

The DECI reports to the Enforcement Officer. However, SMC administers the DECI program. During the course of a project, the DECI must notify the EO within any if the development site is determined to be noncompliant with the soil erosion and sediment control plan. The Village Stormwater Coordinator should also be contacted within 24hours. It is highly recommended that the Stormwater Coordinator remind the DECI to also file an Incidence of Noncompliance (ION) with IEPA. If the discharge from the construction site enters a receiving water within the MS4 jurisdictional boundaries, it is highly recommended that the MS4 also file an ION with IEPA.

3.5.B.3 Enforcement Officer

It is also both the right and the responsibility of the Enforcement Officer to ensure that all incidences of non-compliance received from a DECI are resolved. Furthermore it is the Enforcement Officer's right and the responsibility to notify the SMC if a DECI listed by SMC is not adequately performing the DECI responsibilities. SMC may remove a DECI
from the approved DECI list. However, a DECI may be removed from a development by the Enforcement Officer at their sole discretion.

3.5.C Erosion and Sediment Control BMPs (BMP D.2)

As described in the QLP section above, the site plan is required to comply with minimum prescribed practice requirements set forth in the WDO. The WDO also allows for the Village to require additional measures, above and beyond minimum control measures, to prevent the discharge pollutants from construction sites.

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.5.D Construction Site Waste Control (BMP D.3)

As described in the QLP section, the WDO includes appropriate waste control provisions.

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.5.E Site Plan Review (BMP D.4, E.4)

The Village is a certified community for the enforcement of the Stormwater Provisions of the WDO. Applicants are directed to Engineering Department for information pertaining to the permitting process. Developments that exceed the WDO minimum thresholds are provided with a Lake County Watershed Development Ordinance (WDO) application form. Applicants submit the completed form and supporting documentation to the Engineering Department for review and comment. The Engineering Department performs a review of the proposed site plan and provides comments to the applicant on any plan deficiencies and/or recommended plan enhancements. The plan review also assists in identifying other approvals that the applicant may be required to obtain. The permit is issued once all applicable provisions of the WDO have been addressed. The permit lists any additional conditions that are applicable for the development, including providing prior notification of the pre-construction meeting to the Village. Attendance of the preconstruction meeting shall be made a condition of the permit for all major developments. The applicant is required to post the permit at the construction site.

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.5.F Site Inspection Procedures (BMP D.6, E.5)

WDO provisions are described in the QLP section above. Representatives of the Village are authorized to enter upon any land or water to inspect development activity and to verify the existing conditions of a development site that is under permit review.

The Village may inspect site development at any stage in the construction process.

Site Inspection Process:

- Village attends the pre-construction meeting on applicable development sites. Complete Pre-Construction Meeting Form (Appendix 5.4). It is also recommended that the inspector request to see the SMPP and IEPA NOI for applicable construction sites.
- The applicant notifies the Village when initial sediment and runoff controls measures have been installed.
- The Village inspects the initial sediment and runoff control measures and authorizes the start of general construction.
- The Village inspects the stormwater management system and authorizes additional site improvement activities.
- The Village performs site inspections at the recommended intervals listed above and completes the SE/SC Inspection Form (Appendix 5.5).
- For sites that exceed the WDO thresholds per $\S 601$ a DECI is required, refer to Chapter 3.5.B. 2 for additional information regarding the program.
- The Village requires as-built documentation of the stormwater management system prior to final site stabilization. Tags of the seed mixes are kept by the developer for inspection and approval. Upon approval of the as-builts, the applicant shall permanently stabilize the site.

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.5.G Public Information Handling Procedures (BMP D.5)

The QLP has established a Citizen Inquiry Response System (CIRS) which processes both citizen and agency inquiries. Additionally, the Community frequently receives phone calls regarding a development, either during the review or construction phase. Both site design and construction related phone calls are directed to the Enforcement Officer, or designee. Site design comments are handled on a case by case basis. Construction related calls are typically addressed by performing a site inspection.

Measurable Goal

- Support QLP CIRS efforts
- Enforce WDO

3.5.H Performance Guarantees (BMP D.6)

Pre-construction meeting - No deposit required.
Performance Guarantee (surety) is required for public improvements (i.e. sewer, water, right-of-way work), stormwater management system and landscaping. The Engineers Opinion of Probable Construction Cost (EOPCC) is provided to the Village for review/approval. The required surety amount shall be 110% of the approved EOPCC. In cases where the SMC requires a surety the Community will only hold a surety for the portions of the EOPCC that is not being held by SMC. Alternatively, the Community will provide SMC with a letter indicating that the Village will hold the surety and not reduce the surety amount until SMC approval has been obtained.

The Village will hold 10% of the surety for a minimum of $1-y r$ after site stabilization is complete, and as-built drawings are accepted, to ensure that the vegetation is established and no failures occur. For sites with native vegetation, this portion of the surety will be held for a minimum of $3-\mathrm{yr}$ after site stabilization.

Measurable Goal

- Enforce WDO

3.5.I Violation Notification Procedures (BMP B.6)

In general the compliance due date should be within 5 -working days. However, if the inspector determines that the violation is or will result in significant environmental, health or safety hazards a 24 -hour due date should be set. For time-critical violations, the developer should also be advised to complete an Incidence of Non-Compliance (ION) report with IEPA for all sites that were required to obtain a Notice of Intent (NOI) with IEPA. If the discharge from the construction site enters a receiving water within the MS4 jurisdictional boundaries, it is highly recommended that the MS4 also file an ION with IEPA. The SE/SC Inspection Form is found in Appendix 5.5. The violation procedure is included in Appendix 5.6 along with a sample letter of violation.

Measurable Goal

- Enforce WDO

3.6 Post Construction Runoff Control

The Village complies with NDPES permit requirements by incorporating Ordinance and BMP standards to minimize the discharge of pollutants of development projects. This chapter describes how the compliance with stormwater discharge permit requirements for long-term post-construction practices that protect water quality and control runoff flow is achieved.

This SMPP creates and references extensive policies and procedures for regulating design and construction activities for protecting receiving waters. The design and construction site practices selected and implemented by the responsible party for a given site are expected to meet BMP measures described through the Lake County Technical Reference Manual and IEPA's Program recommendations. All proposed permanent stormwater treatment practices must be reviewed and approved by the Enforcement Officer.

3.6.A Regulatory Program (BMP E.2)

As described in the QLP section, the WDO includes numerous performance standards on Grading, Stormwater and Soil Erosion/Sediment Control that must be met for all parties undertaking construction. The Lake County Technical Reference Manual is a guidance tool that describes BMP and implementation procedures for enforcing the WDO.

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.6.B Long Term Operation and Maintenance (BMP E.3)

As described in the QLP section, the WDO requires that maintenance plans be developed for all stormwater management systems designed to serve major developments. The SMPP includes two long term maintenance plans. These sample maintenance plans are included in Appendix 5.9.

- The first plan is the recommended plan for existing detention and stormwater management facilities, whether publicly or privately maintained. The intent of this sample plan is to provide guidance for the maintenance of facilities that do not have an approved plan. If an existing facility already has an adequate plan adequate; this document would supersede the sample plan. Attempts should be made to provide the sample maintenance plan to pre-WDO sites with stormwater management facilities.
- The second plan is provided to applicants during the permit review period. This plan should be reviewed and enhanced by the applicant to reflect the sites specific design. Receipt of the signed and recorded maintenance plan is required prior to issuance of the WDP or listed as a permit condition.

Measurable Goal

- Support QLP efforts
- Enforce WDO
- Allow for public submission of concerns related to post-construction stormwater runoff control. Follow-up with concerns as appropriate.

3.6.C Runoff Volume Reduction Hierarchy (BMP E.4)

Developments that exceed the thresholds identified in the WDO are required to quantify the RVR provided by the site design. The Community recommends that projects be designed to effectively capture 85% of the average annual rainfall events, as documented in Appendix O of the WDO

Measurable Goal

- Support QLP efforts
- Enforce WDO

3.6.D Watershed Plans (BMP E.7)

SMC has collaborated on a number of watershed based plans throughout the County as described in Chapter 3.1.H. The Village will adopt watershed plans that extend into its corporate limits and review recommended individual site-specific projects and programmatic actions. The MS4 encourages private property owners to implement the recommendations. Implementation of recommendations by the MS4 will be evaluated on a yearly basis as part of its fiscal planning/budgeting process keeping in mind that ONLY the implementation of individual site-specific projects or programmatic actions WITHOUT
the use of 319 funding can be cited by an MS4 community toward meeting ILR40 permitting requirements.

Measurable Goals:

- Encourage private property owners to implement watershed plan recommendations
- Evaluate feasibility of implementing watershed plan recommendations as part of its fiscal planning/budgeting process.

3.6.E Site Inspections (BMP E.6)

The inspection program for its general facilities is discussed in detail in Chapter 3.7.A. The inspection procedure for site inspections during and post construction is described in Chapter 3.5.E. This section focuses on post-construction inspections of previously developed sites, streambanks / shorelines, streambeds, and detention / retention ponds.

3.6.E. $1 \quad$ Shorelines, Streambanks and Stream Bed Sediment Accumulation

The 9 Lakes Watershed-Based Plan, prepared by CMAP 2014, included a stream and detention basin inventory, as depicted in Figure 13 (Figure 33 of the Watershed Plan). The plans also include a list of site specific best management practices within the community based on an assessment of these inventories and other data. Project categories typically include problem discharge locations, problem hydrologic impediments, stream buffers, logjam-debris removal, streambank stabilization and shoreline stabilization. The MS4 encourages private property owners to implement the recommendations. Implementation of recommendations by the MS4 will be evaluated on a yearly basis as part of its fiscal planning/budgeting process, keeping in mind that ONLY the implementation of individual site-specific projects or programmatic actions WITHOUT the use of 319 funding can be cited by an MS4 community toward meeting ILR40 permitting requirements.

Figure 13: Detention Basin Assessments in the 9 Lakes Planning Area
For those areas of the community not evaluated as part of a watershed plan, the community will inspect streambanks and lake shorelines as part of their periodic outfall pre-inventory and pre-screening process. Document observed erosion and/or sediment accumulation. Remedial actions might include notifying the property owner or including maintenance activities in the work program.

Measurable Goals:

- Encourage private property owners to recommended retrofits cited in adopted watershed plan(s).
- Evaluate feasibility of implementing retrofits cited in adopted watershed plan(s) as part of fiscal planning/budgeting process.
- Inspect streambanks and lake shorelines as part of their periodic outfall preinventory and pre-screening process and recommend remedial actions as appropriate.

3.6.E. 2 Detention / Retention Pond

PREVIOUSLY INVENTORIED DETENTION BASINS

The Village encourages private property owners to implement the detention basin and discharge structure retrofits recommended in the 9 Lakes watershed plan. Implementation by the Village, of recommendations, will be evaluated on a yearly basis as part of its fiscal planning/budgeting process, keeping in mind that ONLY the implementation of individual site-specific projects or programmatic actions WITHOUT the use of 319 funding can be cited by an MS4 community toward meeting ILR40 permitting requirements.

OTHER DETENTION BASINS

Portions of the community are located outside of watershed planning areas. Attempts to inspect approximately 20% of all unassessed properties with stormwater management facilities a year; resulting in a re-occurrence inspection interval of every 5 -years.

Inspect the shorelines of these detention basins in the spring and/or fall pending weather conditions (with a goal of inspecting all unassessed ponds once every 5 years). Observed erosion, seeding/re-seeding or slope stabilization needs are documented. A ranking system has been established to identify ponds that would most benefit from a retrofit or other enhancements.

1 Turf, obstructed or other deficiencies
2 Turf, unobstructed
3 Rock
4 Native, obstructed or other deficiencies
5 Native, unobstructed
6 Turf, recreational

Typical BMP for maintenance of these areas are similar to those for a construction site. SMC's streambank/shoreline stabilization manual is used as a starting point in choosing the appropriate BMP for remediation activities. Remedial actions might include notifying the property owner of recommended maintenance activity, deficiencies or additional enhancements or including maintenance activities in the Village work program. Recommendations will take into consideration potential impacts and effects due to climate change.

Measurable Goals:

- Encourage private property owners to implement detention basin and discharge structure retrofits cited in adopted watershed plan(s).
- Evaluate feasibility of detention basin and discharge structure retrofits cited in adopted watershed plan(s) as part of fiscal planning/budgeting process.
- Inspect approximately 20% of all unassessed stormwater management facilities and recommend remedial actions as appropriate.

3.7 Pollution Prevention and Good Housekeeping

The Village is responsible for the care and upkeep of the general facilities, municipal roads, its general facilities and associated maintenance yards. Many maintenance activities are most regularly performed directly by staff; however from time to time contractors are employed to perform specific activities. This chapter describes how the compliance with permit requirements is achieved by incorporating pollution prevention and good housekeeping stormwater quality management into day-to-day operations. Ongoing education and training is provided to ensure that all of its employees have the knowledge and skills necessary to perform their functions effectively and efficiently.

3.7.A Inspection and Maintenance Program (BMPs F.2 - F.4)

This chapter described the Communities Good House Keeping Program by describing areas/items that require inspection and their recommended inspection frequency. It further details recommended maintenance activities and subsequent tracking procedures for each of the tasks.

Measurable Goal for all of 3.7.A

- Implement the SMPP.

3.7.A. $1 \quad$ Street Sweeping

Street sweeping operations are performed to reduce potential illicit discharges and to provide a clean environment. The curb lines of all streets are cleaned on a rotating basis. The rotation maybe changed or interrupted. Each street is typically swept/cleaned approximately 2 to 4 times per year. Sweeper waste is collected and disposed of in the spoil waste area. The intended frequency of street sweeping operations is one week per month, weather permitting.

3.7.A. 2 Drainageways

Drainageways include any river, stream, creek, brook, branch, natural or artificial depression, ponded area, lakes, flowage, slough, ditch, conduit, culvert, gully, ravine, swale, wash, or natural or man-made drainageway, in or into which surface or groundwater flows, either perennially or intermittently. Primary drainageways are described in Chapter 1.4. Minor drainageways include roadside and sideyard swales, overland flow paths, pond outlets, etc.

3.7.A.2.a Driveway Culverts

Maintenance and replacement of driveway culverts is the property owner's responsibility. A minimum 12" diameter culvert is required per Code. Permits are required for culvert replacement; a soil erosion and sediment control plan may be required as part of the permit. The Engineering Department inspects the culvert when it
is set to grade and prior to backfilling. The Public Works may rod/clean culverts on an as needed basis.

3.7.A.2.b CATCH BASINS

Catch basin locations are identified on the Storm Sewer Atlas. The goal is to annually clean approximately 20% of all catch basins, to a minimum sump depth of 2 feet. If catch basin debris is at the invert elevation of the downstream pipe (i.e. has completely filled the sump area), then the downstream storm sewer system is also cleaned. Likewise, if a water main break or other heavy flow occurs that flushes potential illicit discharges into the storm sewer system, the receiving storm sewer lines are inspected and then cleaned as necessary. Spoil waste obtained from catch basin cleaning is disposed of in the spoil waste area. Locations of cleaned catch basins are tracked.

Catch basins found to have structural deficiencies are noted. Necessary remedial actions are completed or incorporated into a capital project.

3.7.A.2.c Other Inlet and Grate Cleaning

Cleaning of these areas occurs on an as-needed basis (e.g. complaints, incidences, standing water, etc). Spoil waste that is obtained from inlet and grate cleaning or vacuuming is disposed of at is disposed of in the spoil waste area. Any waste jetted out is picked up with a clapper bar if possible.

3.7.A.2.d Swales and Overland Flow Paths

Document observed or reported erosion or sediment accumulation. Areas of significant concern are incorporated into a maintenance program.

Privately Owned Drainage Swales (side/rear yard): Document observed or reported erosion or sediment accumulation in privately owned swales. Notify the property owner on an as needed basis for appropriate remediation.

3.7.A. 3 Landscape Maintenance

Maintain general facilities, municipal roads, associated maintenance yards, and other public areas. Municipal staff is responsible for Litter and Debris. A landscape contractor is selected annually to be responsible for the remainder of the landscape maintenance program under the supervision of the Public Works Department. Landscape contractors are required to meet ILR40 training requirements and ensure that they adhere to the SMPP.

3.7.A.3.a Litter and Debris

Litter and debris can accumulate on the Village property and roadway right-of-ways and should be removed. Each Public Works Division is responsible for the cleanup of their respective facilities. Clean-up at park and recreation areas is the responsibility of the Park and Recreation District. Other properties and right-of-ways (including municipal, Township, County and State right-of-ways within the MS4 limits) are cleaned by Public Works personnel or volunteer groups on an as-needed basis.

3.7.A.3.b Private Residence Yard Waste

Yard waste and leaves from private residences are collected through contract. Yard waste is collected weekly throughout the growing season. Leaf collection typically starts in October and runs for approximately six weeks.

3.7.A.3.c FERTILIZERS

The annual landscape contractor is required to be a licensed applicator for fertilizers. Contractor specifications incorporate low impact products. The use of pesticides and fertilizers shall be managed in a way that minimizes the volume of storm water runoff and pollutants.

3.7.A. 4 Snow Removal and Ice Control

During snow removal and ice control activities, salt, de-icing chemicals, abrasives and snow melt may pollute stormwater runoff. To address these potential pollutants, the following procedures for the "winter season" (November 1 through May 1) are implemented.

Participate in watershed groups, as identified by the QLP, organized to implement control measures which will reduce chloride concentrations in receiving waters.

3.7.A.4.a Roadway Ice Control

Use the minimal amount of salt, de-icing chemicals and additives necessary for effective control. Prior to November 1, preparation work to obtain seasonal readiness is completed. These tasks include: inspecting and re-conditioning of spreaders and spinners, install these items onto snow removal vehicles, performing test operations, calibrating distribution rates per National Salt Institution Application Guidelines, and conducting better driver training. The completion of these preparatory tasks helps to ensure that only the necessary level of salt is applied.

Consider the additional use of Calcium Chloride if the ambient temperature is below 20degrees Fahrenheit, to improve the efficiency of snow melting efforts. Incorporate prewetting and alternative deicing methods if appropriate.

3.7.A.4.b Salt delivery and storage

Steps are taken to ensure that the delivery, storage and distribution of salt does not pollute stormwater runoff. The floor of the enclosed salt storage building, and adjacent receiving/unloading area is constructed of impervious material. Push back the limits of the salt pile away from the door opening to minimize potential illicit runoff.

3.7.A.4.c SNow Plowing

Snow plowing activities direct snow off the pavement and onto the parkways to reduce the amount of salt, chemical additives, abrasives or other pollutants that go directly into
the storm sewer system. When deemed necessary, haul accumulated snow to designated stockpile locations. These locations are asphalt surface areas. Snow blowing, plowing or dumping into drainageways is not allowed. Once the snow has melted, the stockpile areas are cleaned with a street sweeper removing any debris deposited.

3.7.A. 5 Vehicle and Equipment Operations

Vehicle and equipment fueling procedures and practices are designed to minimize or eliminate the discharge of pollutants to the stormwater management system, including receiving waters.

3.7.A.5.a Vehicle Washing

Vehicle washing, wheel wash water, and other wash waters must be treated in a sediment basin or alternative control that provides equivalent or better treatment prior to discharge.

3.7.A.5.b Vehicle Maintenance

Vehicle maintenance procedures and practices are designed to minimize or eliminate the discharge of petroleum based pollutants to the stormwater management system, including receiving waters. This chapter discusses proper handling and disposal of vehicle maintenance by-products such as waste oil, antifreeze, batteries and tires.

Waste Oil

Used motor oil, transmission fluids, gear lubes, brake fluids and other vehicle fluids (except antifreeze) are collected and stored xx. Typically, the waste oil tank is emptied and the contents removed for recycling.

Antifreeze

Store used antifreeze. When container is full, contact a special waste hauler for collection and disposal.

Batteries

Store used batteries are stored in an enclosed covered container. Typically, the batteries are collected bi-monthly from a local vendor.

Tires

Used tires are disposed of quarterly by a local vendor.
Other
Private certified companies perform all air-conditioning related work; therefore, the disposal of Freon is not handled directly by the Community. Cleaning fluids, and solvents are contained within an enclosed tank and maintained by a private licensed special waste company.

3.7.A. 6 Animal Nuisance Control

Upon receiving notification, collect "road kill" from right-of-way areas. The carcasses are disposed of in the Public Works Complex garbage dumpsters.

3.7.A. 7 Waste Management (BMP F.4)

Waste Management consists of implementing procedural and structural practices for handling, storing and disposing of wastes generated by a maintenance activity. This helps prevent the release of waste materials into the stormwater management system including receiving waters. Waste management practices include removal of materials such as asphalt and concrete maintenance by-products, excess earth excavation, contaminated soil, hazardous wastes, sanitary waste and material from within the triple basins.

3.7.A.7.a Spoil Stock Pile

Asphalt and concrete maintenance by-products and excess earth excavation materials are temporarily stored in the stock pile. Attempts are made to recycle asphalt and concrete products prior to storage in the spoil stock pile. Licensed waste haulers are contracted to remove and dispose the contents of the spoil stock pile at a licensed landfill. Surface runoff from this area is largely contained.

3.7.A.7.b Contaminated Soll Management

Collect or manage contaminated soil/sediment generated during an emergency response or identified during construction activities for treatment or disposal. Attempts are made to avoid stockpiling of the contaminated soil. If temporary stock piling is necessary, place the stockpile on an impermeable liner. Additionally, BMP (presented in the SMC's Technical Reference Manual or the lllinois Urban Manual, 2014) are used to protect the downslope of the stockpiled area for erosion downstream. Locate the construction access on the upstream side of the temporary stock pile.

3.7.A.7.c Hazardous Waste

Store all hazardous wastes in sealed containers constructed of compatible material and labeled. The containers are located in non-flammable storage cabinets or on a containment pallet. These items include paint, aerosol cans, gasoline, solvents and other hazardous wastes. Do not overfill containers. Paint brushes and equipment used for water and oil-based paints are cleaned within the designated cleaning area. Contain associated waste and other cleaning fluids within an enclosed tank, the tank is maintained by a private licensed special waste company.

3.7.A.7.d SANItaRy Waste

Sanitary waste into a discharged into the sanitary sewer or managed by a licensed waste hauler.

3.7.A. 8 Water Conservation \& Irrigation

Water conservation practices minimize water use and help to avoid erosion and/or the transport of pollutants into the stormwater management system. During periods of dry weather, a sprinkling/irrigation schedule is enforced. Maintenance activities (performed by the staff or its contractors) preserve water by utilizing vacuum recovery as opposed to water based cleaning when possible. Additionally, the water main replacement program decreases the possibility for water main leaks. In the event that a water main leak occurs, valve off the leaking section as soon as possible and then repair.

3.7.A. 9 Green Infrastructure

Operation and maintenance requirements should be described for all of the MS4s green infrastructure.

3.7.A. 10 Special Events

Ensure that entities in charge of special events (such as parades, fairs) prohibit the dumping, depositing, dropping, throwing, discarding or leaving of litter and all other illicit discharges from entering the stormwater management system. The Public Works Department will oversee clean-up activities to promote compliance with the SMPP.

3.7.B Spill Response Plan (BMP F.6, C.9)

Spill prevention and control procedures are implemented wherever non-hazardous chemicals and/or hazardous substances are stored or used. These procedures and practices are implemented to prevent and control spills in a manner that minimizes or prevents discharge to the stormwater management system and receiving waters. The following general guidelines are implemented, when cleanup activities and safety are not compromised, regardless of the location of the spill:

- Cover and protect spills from stormwater run-on and rainfall, until they are removed,
- Dry cleanup methods are used whenever possible,
- Dispose of used cleanup materials, contaminated materials and recovered spill material in accordance with the Hazardous Waste Management practices or the Solid Waste Management practices of this plan,
- Contaminated water used for cleaning and decontamination shall not be allowed to enter the stormwater management system,
- Keep waste storage areas clean, well-organized and equipped with appropriate cleanup supplies, and
- Maintain perimeter controls, containment structures, covers and liners to ensure proper function.

3.7.B. 1 Spill Prevention

Ensure all hazardous substances are properly labeled. Store all hazardous wastes in sealed containers constructed of compatible material and labeled. Locate items, such as paint, aerosol cans, gasoline, solvents and other hazardous wastes, in non-flammable storage cabinets or on a containment pallet. Do not overfill containers. Provide secondary containers when storing hazardous substances in bulk quantities ($>55 \mathrm{gl}$). Dispense and/or use hazardous substances in a way that prevents release.

3.7.B. 2 Non-Hazardous Spills/Dumping

Upon observing or receiving notification of a potential illicit discharge, the Illicit Discharge Incident Tracking Form, found in Appendix 5.7 is used to log and investigate the incident. Appropriate procedures found within this chapter are implemented in the event an illicit discharge has been confirmed.

Non-hazardous spills typically consistent of an illicit discharge of household material(s) into the street or stormwater management system. Upon notification or observance of a non-hazardous illicit discharge, implement the following procedure:

- Sand bag the receiving inlet to prevent additional discharge into the storm sewer system, as necessary. It may be necessary to sand bag the next downstream inlet.
- Check structures (immediate and downstream). If possible, materials are vacuumed out. The structure(s) are then jetted to dilute and flush the remaining unrecoverable illicit discharge.
- Clean up may consist of applying "Oil Dry" or sand and then sweeping up the remnant material.
- After containment and cleanup activities have been performed, fill out the Spill Response Notice (Appendix 5.8) and distributes to adjoining residences/businesses. In residential areas, the hanger should be provided to residences on both sides of the spill and on both sides of the street.
- Document the location, type of spill and action taken on the Indirect Illicit Discharge Tracking Form (Appendix 5.7). .
- If a person is observed causing an illicit discharge, Building Department is notified and appropriate citations issued.

3.7.B. 3 Hazardous Spills

Upon notification or observance of a hazardous illicit discharge, Public Works follows the following procedure:

- Call 911, explain the incident. The Fire Department responds;
- Public Works provides emergency traffic control, as necessary;
- The Fire Department evaluates the situation and applies "No Flash" or "Oil Dry" as necessary;
- The Fire Department's existing emergency response procedure, for hazardous spill containment clean-up activities, is followed;
- Document the location, type of spill and action taken on the Illicit Discharge Incident Tracking Form (Appendix 5.7); and,

If the Fuel Tank leaks, immediately call 911. Shut pump off, if pump won't shut off, shut Shop 2 electric off. Contain spill, put booms around storm sewer.

3.7.C Employee Training (BMP F.1)

The QLP provides training materials and opportunities. Promote education and training employees (or contractors retained to manage Village infrastructure) to ensure that they have the knowledge and skills necessary to perform their functions effectively and efficiently. Employees are encouraged to attend all relevant training sessions offered by the QLP and other entities on topics related to the goals/objectives of the SMPP. Key educational topics include the following:

- Stormwater characteristics and water quality issues;
- The roles and responsibilities regarding implementation of the SMPP to consistently achieve Permit compliance;
- Activities and practices that are, or could be sources, of stormwater pollution and non-stormwater discharges;
- Managing and maintaining green infrastructure and low impact design features; and,
- How to use the SMPP and available guidance materials to select and implement best management practices.

Measurable Goal(s):

- Attend QLP offered training.
- Support QLP efforts by providing program information to staff.

3.7.C. 1 Training Approach

Employees are encouraged to attend all relevant training sessions offered by the QLP and other entities on topics related to the goals/objectives of the SMMP. Make available training materials tailored to specific functional groups. The materials focus on storm
water pollution prevention measures and practices involved in routine activities carried out by the various functional groups.

3.7.C. 2 Training Schedule and Frequency

Digital and hard copies of the training materials will be kept and shared with applicable new employees as part of their job introduction. Employees are encouraged to share information with other employees via email or other formats. Information may include:

- updates and news which might enhance pollution control activities,
- feedback from field implementation of best management practices, or
- new product information.

3.7.C.2.a IDDE Training

Personnel conducting the IDDE portion of the SMPP shall thoroughly read and understand the objectives of the IDDE subchapters of this manual prior to performing any outfall inspections or monitoring efforts.

4 Program and Performance Monitoring, Evaluation and Reporting

The SMPP represents an organized approach to achieving compliance with the stormwater expectations of the NPDES Phase II program for both private and public activities. Land development, redevelopment and transportation improvement projects were required to comply with the provisions of the WDO prior acceptance of the SMPP. This SMPP documents and organizes previously existing procedures and incorporates the objectives of the WDO to create one cohesive program addressing pre-development, construction, post-development activities and municipal operations.

This chapter describes how the QLP and the Village will monitor and evaluate the proposed stormwater pollution prevention plan based on the above stated objective. As part of the stormwater management program, the Village:

- reviews its activities,
- inspects its facilities,
- oversees, guides, and trains its personnel, and
- evaluates the allocation of resources available to implement stormwater quality efforts.

4.1 Monitoring Program

There are extensive monitoring efforts already underway across the County including efforts by the LCHD to monitor numerous lakes, the Des Plaines River Watershed Workgroup and the Fox River Study Group. Refer to Figure 14.

Figure 14: Countywide Monitoring Efforts

4.1.A Fox River Study Group

In accordance with ILR 40 V.A.2.b.x, the Fox River Study Group (FRSG), previously described in Chapter 2.4, satisfies the monitoring requirement for the portion of the community located within the Lower Fox River Watershed.

By agreement between the Illinois EPA and the FRSG, the Fox River Implementation Plan (FRIP) will take the place of a traditional TMDL for dissolved oxygen and nuisance algae in the Fox River. No written agreement has been implemented between the Illinois EPA and the FRSG regarding the FRIP, but the Illinois EPA has worked closely with the FRSG in developing the FRIP since 2001. Because the Illinois EPA's authority to implement and enforce the Clean Water Act comes from the federal government, the FRIP will need to be approved by the U.S. EPA before it officially replaces the TMDL process. The need for a TMDL will be revisited by IEPA after implementation of the FRIP, by evaluating whether the listed reaches are still impaired

The ISWS developed a calibrated QUAL2K water quality model application for the Fox River (Bartosova, 2013). This model was used to simulate future Fox River water quality in response to management actions considered in the FRIP. In 2016, the FRSG will develop a strategy for future data collection and prepare written plan(s) that may potentially include additional water quality monitoring and discussion with IEPA and IDNR of biological data to assess actual condition of aquatic community and potentially identify gaps in existing biological data.

The Village is committed to participating in the FRSG and supporting its efforts.

4.1.B Small Community Monitoring

A portion of the Community is located outside of existing monitoring efforts. In accordance with ILR 40 V.A.2.a. the community conducts annual visual observations of stormwater discharge documenting color, odor, clarity, floating solids, settled solids, suspended solids, foams, oil sheen and other indicators of storm water pollution at upstream and downstream locations along receiving streams within the Village. Refer to
Figure 16 Additional Community Monitoring Locations.

4.2 Program Evaluation (BMP C.6)

At the end of each year the BMPs implemented by the MS4 should be evaluated in order to determine the effectiveness of the program. Include a description of observed areas of program effectiveness, at the end of Part B Stormwater Management Program Assessment within each Annual Report submitted to IEPA. Program areas which do not appear to be improving should also be identified and described within this portion of the Annual Report. This information will be used to provide insight into how the program may need to evolve. The following are some indicators that the BMPs are appropriate.

- A reduced number of outfalls having positive indicators for potential pollutants.
- An improvement, or no change, in the annual monitoring results.
- Improved community awareness of water quality and other NPDES program aspects.
- Increased number of hits on website information related to the NPDES program.
- Increased quantities of Household Hazardous Wastes or Electronic collected by SWALCO.
- Reduced number of septic system failures.
- Increased stakeholder involvement.
- Reduced number of SE/SC violations.
- Increase in Streambank and Shoreline stabilization projects, or a decrease in the extent of projects necessary.
- Improved detention pond quality (including conversion of dry bottom or turf basins to naturalized basins; removal of excess sediment accumulation and a general increase in maintenance activity on detention ponds throughout the MS4).
- Reduced use of chloride and phosphorus by the MS4.
- Improved awareness of water quality and other NPDES program aspects by both Village staff and its contractors.

4.2.A Monitoring Program Evaluation

The results of the monitoring are used to further gage the effects of the SMPP on the physical/habitat-related aspects of the receiving waters and the effectiveness of BMPs. Possible causes of any documented degradation will be investigated and any appropriate corrective actions will be incorporated into future Stormwater Management Program Plan (SMPP).

- As part of the QLP section of the Annual Report, SMC provides a detailed discussion of the State of Lake County Waters including a summary of TMDLs, an assessment of the regional water quality monitoring and watershed group efforts and an estimate of the effectiveness of the regional efforts.
- The Village is responsible for providing a discussion of any additional local monitoring efforts within the MS4 portion of the Annual Report Part C Annual Monitoring and Data Collection.

4.2.B IDDE Program Evaluation

Experience gained from the USEPA NPDES program indicates a lower chance of observing polluted dry-weather flows in residential and newer development areas, while older and industrial land use areas having a higher incidence of observed dry-weather flows. Review the results of the screening program to examine whether any trends can be identified that relate the incidence of dry-weather flow observations to the age or land use of a developed area. If so, these conclusions may guide future outfall screening activities.
Indirect or subtle discharges such as flash dumping are difficult to trace to their sources and can only be remedied through public education and reporting. Therefore, it is expected that to some degree they will continue although at a reduced magnitude and frequency. Although the outfall screening program will be successful in identifying and eliminating most pollutants in dry-weather discharges, the continued existence of dryweather flows and associated pollutants will require an ongoing commitment to continue the outfall screening program.

The first phase of the program was to complete the MS4 wide pre-screening effort, investigate those outfalls exhibiting dry-weather flow and then eliminate identified illicit direct connections. The ILR40 permit, issued in 2016 requires that all high-priority outfalls be evaluated annually. It is logical to assume that completion of the Phase 1 efforts and several years of annual screening, the majority of the dry-weather pollution sources will be eliminated. However, new sources may appear in the future as a result of mistaken cross connections from redevelopment, new-development or remodeling. These efforts will determine the effectiveness of the program on a long-term basis and show ongoing improvement through a reduced number of outfalls having positive indicators of potential pollutants. Include a description of the screening and dry-weather flow investigation, in

Annual Report Part C IDDE Monitoring and Data Collection submitted to IEPA annually.

4.2.C SMPP Document Evaluation

Evaluation of the SMPP. The following types of questions/answers are discussed periodically between the QLP, Stormwater Coordinator, Managers and field staff. Suggested improvements are noted and incorporated into a revised SMPP document, approximately every 5-years.

- Are proper stormwater management practices integrated into planning, designing and construction of both public and private projects?
- Are efforts to incorporate stormwater practices into maintenance activities effective and efficient?
- Is the training program sufficient?
- Is the SMPP sufficient with respect to both the BMPs and measurable goals described for each of the six MCM?
- Are the procedures for implementing the SMPP adequate?
- Are there any TMDL Reports within the community and if yes, is there an action plan for compliance?
- Were there any issues of non-compliance and if yes, determine the plan for achieving compliance with a timeline of actions?

5 Appendices

5.1 List of Acronyms

BMP	Best Management Practices
CIRS	Citizen Inquiry Response System
CWA	Clean Water Act
CWP	Center for Watershed Protection
DECI	Designated Erosion Control Inspector
DRWW	Des Plaines River Watershed Group
EO	Enforcement Officer (Lake County WDO)
EOPCC	Engineers Opinion of Probable Construction Cost
FRIP	Fox River Implementation Plan
FRSG	Fox River Study Group
HHW	Household Hazardous Waste
ID	Identification
IDDE	Illicit Discharge Detection and Elimination
IDOT	Illinois Department of Transportation
IEPA	Illinois Environmental Protection Agency
ION	Incidence of Non-compliance (with IEPA)
LCDOT	Lake County Division of Transportation
LMU	Lakes Management Unit of Lake County
MAC	Municipal Advisory Committee of Lake County
MCM	Minimum Control Measure
MS4	Municipal Separate Storm Sewer Systems
NOI	Notice of Intent
NOT	Notice of Termination (with IEPA)
NPDES	National Pollutant Discharge Elimination System
POTW	Publically Owned Treatment Works
QLP	Qualify Local Program
SE/SC	Soil Erosion and Sediment Control
SMC	Lake County Stormwater Management Commission
SWALCO	Solid Waste Agency of Lake County
SMPP	Stormwater Management Program Plan
TAC	Technical Advisory Committee of Lake County
TMDL	Total Maximum Daily Load
USEPA	United States Environmental Protection Agency
WDO	Lake County Watershed Development Ordinance
WDP	Watershed Development Permit
WMB	Watershed Management Board

5.2 Stormwater Outfall Screening Equipment Checklist

STORM WATER OUTFALL SCREENING EQUIPMENT CHECKLIST	
Field Analysis	pH Testing Strips
	Chlorine Testing Strips
	Copper Test Strip
	Ammonia Test Strip
	Phenols Test Kit (Minimum of 15 Tests)
	Detergents Test Kit (Minimum of 15 Tests)
	Color Chart
	Thermometer
	Wash Bottle with Tap Water
Sampling	Extended Sampler
	$250-\mathrm{ml}$ and $500-\mathrm{ml}$ glass sample containers with labels
	Cooler with ice or ice packs
Other	Outfall Screening Data Form (Minimum of 10)
	Outfall Sampling Report (Minimum of 10)
	Clipboard and Pens
	Resident Form Letters (Minimum of 10)
	Training Manual
	Storm Sewer Atlas
	Digital Camera
	Flashlight
	Manhole Cover Hook
	Tape Measure
	Folding Rule
	Brush Clearing Tool
	Plastic Trash Bags
	Paper Towels
Safety (PPE Equipment)	Traffic Cones/Flags/Light Sticks
	Traffic Safety Vest
	First Aid Kit
	Steel-Toe Boots
	Work Gloves
	Safety Glasses/Goggles
	Rubber Boots
	Disposable Gloves (Latex)
	ID Badge
Personal (supplied by employee if desired)	Insect Repellant
	Sunscreen

Safety is the primary consideration while inspecting upstream sampling locations. In general, the rule "if in doubt, don't" is followed. Latex gloves are worn while collecting and handling samples. A first aid kit is included in each vehicle to treat minor injuries. Obtain medical help for major injuries as soon as possible. Report all injuries, minor and major to appropriate persons.

Access to Private Property

In some cases, it may be necessary for Public Works personnel to enter or cross private property to investigate discovered illicit discharges. A form letter should be prepared that includes a short description of the project, the purpose of the access to the property, and the name of a project contact person with a telephone number. Attempt to contact each home, or business, owner for permission. Public Works personnel shall have identification indicating that they are municipal employees. If the owner is not present, a letter should be left at the premises to facilitate return inspection. If permission to access property is denied, a public official should then contact the owner at a later date. All access by municipal personnel onto private property shall conform to the insert ordinance name if applicable.

Avoid confrontational situations with citizens and attempt to answer questions concisely and without being alarmist. Public Works personnel should be coached on appropriate responses to questions from citizens. If a field crew feels uncomfortable or threatened, they should remove themselves from the situation and report to the incident to their supervisor.

Traffic

All traffic control measures are to be in accordance with the requirements of the Manual on Uniform Traffic Control Devices and other internal Policies and Procedures as set forth by the Public Works Department.

In general, the following additional policies are applicable. Public Works personnel generally work on streets only during the hours of 9 a.m. to 3 p.m. except in emergency situations. All field crews are required to wear Personal Protection Equipment (PPE) in accordance with Standard Operating Procedures set forth by the Public Works Department.

Confined Space Entry

Confined space entry for this program would include climbing into or inserting one's head into a pipe, manhole, or catch basin. In general, do not cross the vertical plane defining an outfall pipe or the horizontal plane defining a manhole, unless properly prepared for confined space entry. IN NO CASE SHALL FIELD CREW MEMBERS WHO ARE UNTRAINED AND/OR UNEQUIPPED FOR CONFINED SPACE ENTRY ATTEMPT TO ENTER CONFINED SPACES._Confined space entry shall be conducted only by trained personnel with appropriate rescue and monitoring equipment.

5.2 Storm Water Outfall Screening Equipment Checklist

Other Hazards

Table 5: Other Outfall Inspection Hazards

Hazard	Prevention
Access	Avoid steep slopes, dense brush and deep water. Report unsafe locations and move on to next location.
Stuck	Avoid wading where bottom sediments are easily disturbed or depths are unknown.
Strong Gas/Solvent Odor	Do not select manhole for sampling
Bodily Harm From Manhole Covers	Use manhole hook and watch for pinch points
Slip	Proper Foot Gear and Use of Rope If Warranted
Falls	Use extended sample collection device; don’t cross horizontal or vertical plane at end of outfall
Heat and Dehydration	Adequate Water Intake; Avoid Excessive Exertion on Hot Days
Sunburn	Sunscreen and Appropriate Clothing
Poisonous Plants/Animals	Identify and Avoid
Vicious Dogs	Avoid; Use Animal Repellent if necessary
Water Bodies	Flotation Devices
Ticks	Check Entire Body at End of Each Day
Mosquitoes	Apply Repellent

5.3 Stormwater Outfall Inspection Data Form

- If none of the parameters are outside of the acceptable then the investigation can be closed.

Section 7 Any Non-Illicit Discharge Concerns

Any problems or unusual features are to be entered here. If the outfall appears to be potentially impacted by inappropriate discharges, this can be recorded here. This section is to be completed even if no flow is observed.

Section 1: Background Data

Subwatershed:	Outfall ID:	
Date:	Time (Military):	
Temperature:	Inspector(s):	
Previous 48 Hours Precipitation:	Photo's Taken (Y/N)	If yes, Photo Numbers:
Land Use in Drainage Area (Check all that apply):	\square Open Space	
\square Industrial	\square Institutional	
\square Residential	Other:	
\square Commercial	Known Industries:	

Section 2: Outfall Description

LOCATION	MATERIAL	SHAPE		DIMENSIONS (IN.)	SUBMERGED
Storm Sewer (Closed Pipe)	RCP CMP PVC HDPE Steel Clay / draintile Other: \qquad	Circular Elliptical Box Other: \qquad	Single Double Triple Other:	Diameter/Dimensi ons: \qquad \qquad	
Open drainage (swale/ditch)	Concrete Earthen rip-rap Other:	Trapezoid Parabolic Other:		Depth: Top Width: Bottom Width:	

Section 3: Physical Indicators

INDICATOR	CHECK if Present	DESCRIPTION	COMMENTS
Outfall Damage	\square	\square Spalling, Cracking or Chipping $\quad \square$ Peeling Paint \square Corrosion	
Deposits/Stains	\square	\square Oily $\quad \square$ Flow Line $\quad \square$ Paint \square Other:	
Abnormal Vegetation	\square	\square Excessive \square Inhibited	
Poor pool quality	\square	\square Odors \square Colors \square Floatables \square Oil Sheen \square Suds \square Excessive Algae \square Other:	
Pipe algea/growth	\square	\square Brown \square Orange \square Green \square Other:	
Do physical indictors suggest an illicit discharge is present (Y/N):			

Flow Present?	\square Yes	\square No	If No, Skip to Section 7 and Close Illicit Discharge Investigation
Flow Description	\square Trickle	\square Moderate	\square Substantial

Section 4: Physical Indicators (Flowing Outfalls Only)

INDICATOR	CHECK if Present	DESCRIPTION	RELA	VE SEVERITY I	X (1-3)
Odor	\square	\square Sewage \square Rancid/sour \square Sulfide \square Petroleum/gas \square Laundry \square Other:	\square 1-Faint	2 - Easily detected	3 - Noticeable from a distance
Color (color chart)	\square	\square Clear \square Brown \square Gray \square Yellow \square Green \square Orange/Red \square Multi-Color \square Other:	1-Faint colors in sample bottle	2 - Clearly visible in sample bottle	$\square 3$-Clearly visible in outfall flow
Turbidity	\square	See severity	$\begin{aligned} & \square \text { 1-Slight } \\ & \text { cloudiness } \end{aligned}$	$\square 2$ - Cloudy	$\square 3$ - Opaque
Floatables -Does Not Include Trash!!	\square	$\begin{aligned} & \square \text { Sewage } \square \text { Suds and Foam } \\ & \square \text { Petroleum (oil sheen) } \\ & \square \text { Grease } \square \text { Other: } \end{aligned}$	\square 1-Few/slight; origin not obvious	2 - Some; indications of origin	$\square 3$-Some; origin clear
Do physical indictors (flowing) suggest an illicit discharge is present (Y/N):					

Section 5: On-Site Sampling / Testing (Flowing Outfalls Only)
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { PARAMETER } & \text { RESULT } & \text { ACCEPTABLE RANGE } & \begin{array}{c}\text { WITHIN } \\ \text { RANGE (Y/N) }\end{array} & \text { EQUIPMENT } \\ \hline \text { Temperature } & & \text { NA } & \text { NA } & \text { Thermometer } \\ \hline \mathrm{pH} & & 6-9 & & \text { 5-in-1 Test Strip } \\ \hline \text { Ammonia } & & <3 \mathrm{mg} / \mathrm{L} \mathrm{April}-\text { Oct } \\ <8 \mathrm{mg} / \mathrm{L} \mathrm{Nov}-\mathrm{March}\end{array}\right]$
(Note NA values used for future tracing procedures)
Section 6: Data Collection for Lab Testing (see flow chart)

1. Sample for the lab?	\square Yes	\square No
2. If yes, collected from:	\square Flow	\square Pool

PARAMETER	RESULT (from lab)	ACCEPTABLE RANGE	WITHIN RANGE (Y/N)
Fecal Coliform		400 per 100 mL	
Flouride		$0.6 \mathrm{mg} / \mathrm{l}$	
Potassium		Ammonium $/$ Potas sium ratio or $>20 \mathrm{mg} / \mathrm{l}$	

*note label sample with outfall number
Section 7: Any Non-Illicit Discharge Concerns (e.g., trash or needed infrastructure repairs)?
\square

Figure 4: Outfall Inspection Procedure Flow Chart

Instructions for completing the Stormwater Outfall Inspection Data Form

Strike out incorrect entries with a single line; correct values or descriptions are written above or near the struck-out entries. Do not use a new data entry form to correct an incorrect entry. At the completion of each outfall inspection, the field crews are responsible for ensuring that a Stormwater Outfall Inspection Data Form has been completely and correctly filled out and that all data and remarks are legible. It is important to check that values for all chemical parameters have been entered.

Section 1: Background Data

Subwatershed: The receiving water from the stormwater outfall inventory to be entered here.

Outfall ID: Enter the outfall identification number from the stormwater outfall inventory.
Date: To avoid confusion, dates are be written in the following manner: DAY MONTH YEAR. For example, 10 MARCH 2007.

Time: Military time (24-hour clock) to be used (for example, 8:30 a.m. would be written as 0830; likewise, 1:30 p.m. would be written as 1330).

Temperature: A concise description of the weather conditions at the time of the screening is to be recorded (for example, Clear, $75^{\circ} \mathrm{F}$).

Inspector: The name(s) of the field personnel.
Previous 48 Hours Precipitation: The total amount of precipitation during the 48 hours preceding the inspection is to be noted (for example, none-72 Hours or 0"-4 days). If the total precipitation is not known, it is appropriate to enter a qualitative assessment if the precipitation was minor. For example, Drizzle-36 Hours if appropriate. If the precipitation amount was significant, actual precipitation totals is obtained from a local rain gage, if available.

Photo's Taken (Yes/No): Photographs are to be taken with a camera that superimposes a date and time on the film. The date and time should correspond to the date and time recorded on the data form.

Photo Numbers: If photographs are taken, the number(s) is recorded.
Land Use: Check all that apply, noting which land use is predominate. If the industrial box is checked, any known industries are listed to facilitate potential tracing efforts.

Section 2: Outfall Description

Type of Outfall: Storm Sewer (Closed Pipe) or Open Drainage (Swale/Ditch):

First check if the outfall is either from a Closed Pipe or Open Drainage. Then complete the following row to describe outfall characteristics.

Section 3: Physical Indicators

Indicators: Complete rows describing outfall characteristics (Outfall Damage, Deposits/Stains, Abnormal Vegetation, Poor pool quality, Pipe algea/growth). This section is filled out regardless of current flow conditions. No flow during the time of the inspection, does not rule out the potential of illicit discharges. Corroding or stained pipes, dead or absence of vegetation, are potential indicators of illicit discharges from direct or indirect (i.e. dumping) sources.

Likelihood: After inspecting the physical conditions of the outfall, the likelihood of an illicit discharge is assessed.

Flow Present (Yes/No): A Yes or No is entered here to indicate the presence or absence of dry-weather flow. If the outfall is submerged or inaccessible, "See Notes" is entered and an explanation provided in the "Notes" section.

Flow Description: A description of the quantity of the dry-weather flow is provided. Refer to Figure 6 of the SMPP.

Flow Chart Procedure:

- If No is entered in the "Flow Present" block and no non-flowing physical indicators appear present the inspection can be closed, skip to Section 7 of the form.
- If No is entered in the "Flow Present" block but indicators appear present, place the outfall on the follow-up inspection log, then the current inspection can be closed, skip to Section 7 of the form.
- If Yes is entered in the "Flow Present" block (regardless of the presence of nonflowing physical indicators), complete remainder of Section and proceed to Section 4.

Section 4: Physical Indicators (Flowing Outfalls Only)

Complete rows describing outfall characteristics (Odor, Color, Turbidity, Floatables). This section is filled out for flowing outfalls only.

Odor: The presence of an odor is to be assessed by fanning the hand toward the nose over a wide-mouth container of the sample, keeping the sample about 6 to 8 inches from the face. Be careful not to be distracted by odors in the air. Provide a description of the odor, if present. Refer to Table 2 of the SMPP.

Color: The presence of color in the discharge is to be assessed by filling a clean glass sample container with a portion of the grab sample and comparing the sample with a color chart, if color is present. If a color chart is used, the number corresponding to the color matching the sample is to be entered in this blank. Color is not assessed by looking into the discharge. Refer to Table 3 of the SMPP.

Turbidity "clarity": Turbidity is a measure of the clarity of water. Turbidity may be caused by many factors, including suspended matter such as clay, silt, or finely divided organic and inorganic matter. Turbidity is a measure of the optical properties that cause light to be scattered and not transmitted through a sample. The presence of turbidity is to be assessed by comparing the sample to clean glass sample container with colorless distilled water. Refer to Table 4 of the SMPP.

Floatables: The presence of floating scum, foam, oil sheen, or other materials on the surface of the discharge are to be noted. Describe of any floatables present that are attributable to discharges from the outfall. Do not include trash originating from areas adjacent to the outfall in this observation. Refer to Figure 5 and Table 4 of the SMPP.

Likelyhood:_After inspecting the physical conditions of the outfall discharge, the likelihood of an illicit discharge is assessed. If flowing physical indicators are present the tracing procedure are immediately implemented by one of the field crew. The second member of the field crew continues with the inspection by performing the on-site testing in Section 5.

Flow Chart Procedure:

- If flowing physical indicators are present the tracing procedure is immediately implemented by one of the field crew. The second member of the field crew continues with the inspection by performing the on-site testing in Section 5.
- If flowing physical indicators do not suggest an illicit discharge continue with the inspection by performing the on-site testing in Section 5.

Section 5: On-Site Sampling/Testing (Flowing Outfalls Only)

Parameters: Test strip or kit chemical analyses are conducted for the following parameters in accordance with the Flow Chart, refer to Figure 7 of the SMPP.

- pH , test strip,
- Color, color chart,
- Chlorine, test strip,
- Copper, test strip,
- Ammonia, test strip,
- Phenols, test kit, and
- Detergents, test kit.

Testing is done by either a test strip or test kit as applicable (refer to the equipment column). The results are compared with the "acceptable range" and the "within range" column is filled out with a Yes or No. Note that the Temperature, Alkalinity and Hardness are determined although these results do not need to be compared with an "acceptable range". These values are used to assist in determining the source of the illicit discharge during the tracing procedure.

Sampling Location: A description of the actual sampling location is to be recorded (for example, at end of outfall pipe). If the outfall is submerged or is inaccessible for sampling, an upstream sampling location may be required. A description of any upstream sampling locations is recorded here. Grab samples are collected from the middle, both vertically and horizontally, of the dry-weather flow discharge in a critically cleaned glass container. Samples can be collected by manually dipping a sample container into the flow.

Sampling Procedures: Detailed, step-by-step instructions for using the test strips and kits are available through the Engineering and/or Public Works Department. Please also refer to Chapter 3.3.B.7.b. for test kit safety information. Use the following procedures for all test kit analyses:

1. Take a grab sample and swirl to ensure that the sample is well mixed.
2. Rinse the sample cup (25 ml) twice with distilled water. Next, rinse the sample cup twice with water from the grab sample.
3. Fill the sample cup to the 25 ml mark, or as required by the instructions for the test kits. Hold the sample cup at eye level to ensure that measurements are accurate.
4. Conduct the test kit analyses following the manufacturer's instructions.
5. Dispose of the sample as follows:

- If no chemical or reagents have been added to the sample, the water can be poured on the ground.
- If any chemical or reagent is added to the sample, pour the water into a container marked "Liquid Waste" for proper disposal to a sanitary sewer system at the end of the day.

6. Rinse the sample cup three times with tap water and dry with a paper towel.

Flow Chart Procedure:

- If any parameter is outside of the "acceptable range" then an illicit discharge has likely been found. The tracing procedure is immediately implemented by one of the field crew. Testing can be stopped, and the second member of the field crew continues with the inspection by completing Section 7.
- If none of the parameters are outside of the acceptable range, proceed to Section 6.

Section 6: Data Collection for Lab Testing

Determine if the Village's Waste Water Treatment Plant (WWTP) has adequate staff capacity to analyze the samples.

- If the WWTP has adequate staff capacity, collect grab samples and provide them to the WWTP. Note the location of the sample. Label the sample with the outfall ID number. Proceed to Section 7 while in the field and complete the remainder of Section 6 after the lab results are available.
- If the WWTP does not currently have adequate capacity, determine if Sections 3 or 4 of the inspection form suggest an illicit discharge.
- If Sections 3 or 4 suggest an illicit discharge contact and outside lab to perform the testing. Proceed to Section 7 while in the field and complete the remainder of Section 6 after the lab results are available.
- If Sections 3 or 4 do not suggest an illicit discharge, note the outfall ID number. Place the outfall on the follow-up inspection log and proceed to Section 7 of the form. Re-inspect and sample the discharge when the WWTP has adequate capacity.

Sample Location: The location of the sample is noted. Additionally, the sample is labeled with the outfall ID number. Use the sampling procedures and refer to Chapter 3.3.B.7.b. for test kit safety information. The following additional items are noted.

1. When you collect any samples you must fill out an Outfall Sampling Report (Appendix 5.4). The report must document time you arrive on location, take the sample and get to the plant to drop off the sample.
2. A $500-\mathrm{ml}$ glass bottle sample is used to collect the sample. If you are collecting a sample that has grease $2-250 \mathrm{ml}$ samples taken with a glass container are required.
3. If you use the sampling container that is on a rope, it must be washed with soap and water after every use.

Parameters: Grab samples and lab testing is performed. After lab results are available enter the results here.

- If any parameter is outside of the "acceptable range" then an illicit discharge has likely been found. The tracing procedure should be immediately implemented.

5.4 Pre-Construction Meeting Form

Date \& Time of PreCon	
Weather Conditions	
24hr Precipitation	

\square Update Report

Lake County Stormwater Management Commission PreConstruction Meeting Report

(his cell intentionally left blank		

Database Code	NS - Not Started	Deposits: PreCon \$	Inspection \$	Deposit Actions	No Action
Distribution List			Follow up Needed (by SMC)		

Save as DOCMSave as PDF
\square Reset Form
If you would like to provide feedback regarding the SMC inspection process please go to: (password - survey)
www.lakecountyil.gov/Stormwater/Pages/inspectionprocesssurvey-.aspx

5.5 Soil Erosion and Sediment Control Inspection Form

Project Status	
Action / Response Needed	
Date \& Time of Inspection	
Weather Conditions	
24hr Precipitation	

\square Update Report

Lake County Stormwater Management Commission Field Observation Report

Items noted as Deficient or NonCompliant: \boxtimes None

Project Status	Compliant	NonCompliance Correction Deadline	No Action Required	\square Stop Work Order Issued

this cell intentionally left blank

Database Code	NS - Not Started	Deposits: PreCon \$	Inspection \$	Deposit Actions	No Action
Distribution List			Follow up Needed (by SMC)		

Save as DOCMSave as PDF
If you would like to provide feedback regarding the SMC inspection process please go to: (password - survey) Reset Form

5.6 Sample Notice of Violation Letter

Date:

$1^{\text {ST }}$ NOTICE OF VIOLATION

Applicant Name
Company
Address
City State Zip
\section*{Subject: Project Name

Watershed Development Permit No. ???-??-???

$1^{\text {st }}$ Notice of Violation}

Dear Permittee:

You are hereby notified of the following violation(s) to your Watershed Development Permit:
Failure to notify the Village prior to construction.Failure to display Permit placard visible from street.Failure to install/maintain a non-erosive outlet from the structure to the watercourse (Art. IV, Sec. B.1.j.1.b).
Location(s)Failure to install/maintain soil erosion and sediment control features prior to the hydrologically disturbing upstream areas (Art. IV, Sec. B.1.j.1.c).

Location(s)Failure to install/maintain temporary or permanent seeding (Art. IV, Sec. B.1.j.1.d.).
Location(s)
Failure to install/maintain sod (Art. IV, Sec. B.1.j.1.d.).
Location(s)
Failure to install/maintain erosion control blanket (Art. IV, Sec. B.1.j.1.d.).
Location(s)
Failure to install/maintain silt fence, meeting AASHTO Std. Spec 288-00 (Art. IV, Sec. B.1.j.1.f.i).
Location(s)Failure to install/maintain sediment traps (Art. IV, Sec. B.1.j.1.f.ii).
Location(s)
Failure to install/maintain sediment basins with perforated filtered riser pipe (Art. IV, Sec. B.1.j.1.f.iii).
Location(s)Failure to install/maintain storm inlet protection (Art. IV, Sec. B.1.j.1.g).
Location(s)
Failure to route dewatering services through an effective sediment control measure (Art. IV, Sec. B.1.j.1.h).
Location(s)

Failure to install/maintain stabilized construction entrance. Failure to clean right of way/pavement. (Art. IV, Sec. B.1.j.1.j).

Location(s)Failure to install/maintain runoff diversion controls (Art. IV, Sec. B.1j.1.m).
Location(s)Failure to prevent erosion from stockpile, or the placement of stockpile in a flood-prone area, buffer, WOUS or IWLC (Art. Iv, Sec. B.1j.1.n).

Location(s)
Failure to maintain dust control (Art. IV, Sec. B.2.b.8.e.).
Location(s)
Failure to follow permitted construction sequencing (Art. IV, Sec. B.2.b.8.j).
Location(s)

You must take immediate action and cure all deficiencies identified above within five (5) working days, or the (insert MS4 type) may issue a Stop Work Order or invoke Article VII -Penalties and Legal Actions of the WDO that provides for up to a $\$ 500$ fine for each offense each day the violation continues. Once all deficiencies have been cured, please call our office to schedule a re-inspection. If you have any questions please contact the (insert contact) at (xxx)xxx-xxxx.

Sincerely,

XX

Enforcement Officer
C:

Summary of Violation Notification Procedure

$1^{\text {st }}$ Notice: Village will furnish a Violation Notification to applicant and/or representative via fax and Certified Mail outlining necessary corrective measures to be completed and re-inspected within 5 -working days of said notification. After which time, if violations are still not corrected, a Red Tag will be issued for the site (i.e. all work to stop except for activities related to correcting violations).

2nd Notice: Village issues a Red-Tag for the site along with a Conditional Stop Work Order (allowing only remediation activities) via fax and Certified Mail granting an additional 5 -working day deadline to complete remedial work to cure said WDO violation(s). Fines continue to accrue.

3rd and Final Notice: If corrective measures have not been completed within the period allowed by $2^{\text {nd }}$ Notice, the Village shall meet with the applicant/developer to discuss the Village's additional punative actions and the plan and schedule within which the necessary remedial measures will be completed. Fines continue to accrue and the Conditional Stop Work Order remains in effect.

NOTE: Building and/or Occupancy Permits and surety reduction requests will be withheld until all violations are resolved and levied fines are paid.

5.7 Indirect Illicit Discharge Tracking and Summary Forms

Illicit Discharge Incident Tracking Form

Incident ID:				
Responder Information				
Call taken by:	Call date:			
Call time:	Precipitation (inches) in past 24-48 hrs:			
Reporter Information				
Incident time:	Incident date:			
Caller contact information (optional):				

Suspected Violator (name, personal or vehicle description, license plate \#, etc.):

IDDE Summary Form					
Call Date	Call Time:	Incident Date:	Incident Location:	Upland Indicator	Stream Indicator

5.8 Spill Response Notice

Stormwater Pollution Found in Your Area!

This is not a citation.

This is to inform you that our staff found the following pollutants in the storm sewer system in your area. This storm sewer system leads directly to

Motor oil
\square Oil filters

- Antifreeze/
transmission fluid
\square Paint
\square Solvent/degreaser

\square Cooking grease
\square Detergent
\square Home improvement waste (concrete, mortar)
- Pet wasteYard waste (leaves, grass, mulch)Excessive dirt and gravel
-Trash
-Construction debris
- Pesticides and fertilizers

\square Other

For more information or to report
an illegal discharge of pollutants, please call:

Village of Island Lake
Public Works Department

Stormwater runoff is precipitation from rain or snowmelt that flows over the ground. As it flows, it can pick up debris, chemicals, dirt, and other pollutants and deposit them into a storm sewer system or waterbody.
Anything that enters a storm sewer system is discharged untreated into the waterbodies we use for swimming, fishing, and providing drinking water.

Remember: Only Rain Down the Drain

To keep the stormwater leaving your home or workplace clean, follow these simple guidelines:

- Use pesticides and fertilizers sparingly.
- Repair auto leaks.
- Dispose of
 household hazardous waste, used auto fluids (antifreeze, oil, etc.), and batteries at designated collection or recycling locations.
- Clean up after your pet.
- Use a commercial car wash or wash your car on a lawn or other unpaved surface.
- Sweep up yard debris rather than hosing down areas. Compost or recycle yard waste when possible.
- Clean paint brushes in a sink, not outdoors. Properly dispose of excess paints through a household hazardous waste collection program.
- Sweep up and properly dispose of construction debris like concrete and mortar.

5.9 Sample Maintenance Plans

STORMWATER MANAGEMENT SYSTEM MAINTENANCE PLAN FOR NEW FACILITIES

Subject: INSERT DEVELOPMENT NAME HERE

SUCH PROPERTY BEING THE REAL PROPERTY NOW DULY PLATTED AS INSERT DEVELOPMENT NAME HERE, AS SUCH PLAT IS NOW RECORDED AS DOCUMENT NO. INSERT DOCUMENT NUMBER, IN THE OFFICE OF THE RECORDER OF DEEDS OF THE COUNTY OF LAKE, STATE OF ILLINOIS, HEREBY MAKES THE FOLLOWING DECLARATIONS OF MAINTENANCE RESPONSIBILITIES.

Responsibilities

Adequate provisions for maintenance of the stormwater system are an essential aspect of long-term drainage performance. Responsibility for the overall maintenance shall rest with the insert responsible party name here.

Purpose and Objective:

Detention and water quality treatment facilities, storm sewers, swales and native vegetation/buffer areas define a development's stormwater management system. When land is altered to build homes and other developments, the natural system of trees and plants is replaced with impervious surfaces like sidewalks, streets, decks, roofs, driveways, or lawns over highly compacted soils. As a result more rain water / storm water flows off the land at a faster rate and less rain water is absorbed into the soil. This can lead to streambank erosion, downstream flooding and increased concentrations of pollutants. The storm water management system was designed to help slow the rate of runoff from the development and improve the quality of the storm water leaving the site.

Interpretation as to Requirements Under This Maintenance Plan:

The requirement for this Maintenance Plan is generated by the Lake County Watershed Development Ordinance. Therefore, the interpretation of the maintenance requirements set forth in this Maintenance Plan shall be interpreted on the basis of the intent and requirements of said Ordinance.

Inspection Frequency:

Inspection experience will determine the required cleaning frequencies for the components of the stormwater management system. At a minimum, the attached checklist items should be inspected annually. Detention ponds (including the outlet control structure and restrictors) should be inspected on a monthly basis during wet weather conditions from March to November.

Maintenance Considerations:

Whenever possible, maintenance activities should be performed during the inspection. These activities should be supplemented by repair / replacement as required. A Registered Professional Engineer (PE) shall be hired for design resolution of specific items as indicated on the checklist below.

Cost Considerations:

Frequent maintenance program work execution will lead to less frequent and less costly longterm maintenance and repair. The attached checklist items may need to be amended based on experience recorded over the initial period of occupancy of the subdivision.

Record Keeping:

Separate and distinct records shall be maintained by the responsible party for all tasks performed associated with this plan. The records shall include the dates of maintenance visits, who performed the inspection, and a description of the work performed.
\qquad , the owner's agent, has caused these presents to be signed and acknowledged, this \qquad day of \qquad , 2 \qquad .

By:

Post-Construction Stormwater Management System Inspection Checklist

The following checklist describes the suggested routine inspection items and recommended measures to be taken to ensure that the Stormwater Management System functions as designed. When hiring a PE is the recommended measure, the PE shall inspect, evaluate and recommend corrective actions. The General section outlines items that should be taken into consideration during inspection and maintenance activities. While performing an overall inspection of your system, please check for the following items.

General -

- Litter and debris shall be controlled.
- Accumulated sediment shall be disposed of properly, along with any wastes generated during maintenance operations.
- Riprap areas shall be repaired with the addition of new riprap, as necessary, of adequate size and shape.
- Roads and parking lots shall be swept or vacuumed on a periodic basis.
- Access path to storm water management facilities should be free from obstructions (woodpiles, sheds, vegetation).
- Fences, gates and posts shall be maintained.
- Signs shall be maintained.

Dams and berms

__ Settlement. If settlement observed, hire a PE.
Breaks or failures. If failure observed, notify the Village immediately and hire a PE.
Erosion. Repair as needed.
Signs of leakage, seepage or wet spots. If observed, hire a PE.
Unwanted growth or vegetation. Remove as needed.
Shorelines
___ Erosion or rip-rap failures. Repair as needed
__ Undermining. Stabilize and repair as needed.
Outlet and inlet structure
__ Obstructions blocking outlet pipe, restrictor, channel or spillway. Remove obstructions immediately.
Separation of joints. Repair as needed.
_ Cracks, breaks, or deterioration of concrete. Repair as needed
_ Scour and erosion at outlet. If observed, repair (consider additional or alternative stabilization methods).
Condition of trash racks. Remove any collected debris.
Outlet channel conditions downstream. Stabilize soil or remove obstructions as needed.

Storage Volume
__ Facilities shall be inspected to ensure that the constructed volume for detention is maintained. No sediment, topsoil, or other dumping into the facility shall be allowed. If a detention facility includes specific locations designed to accumulate sediment these locations should be dredged every 5 -yrs or when 50% of the volume has been lost.
_- Wet ponds lose 0.5-1.0\% of their volume annually. Dredging is required when accumulated volume loss reaches 15%, or approximately every 15-20 years.

Storm Sewers

\qquad System is free draining into collection channels or catch basins. If concerned, clean or repair.
__ Catch basins. Remove sediment when more than 50% of basin sump is filled.
__ Siltation in Culvert. Culverts shall be checked for siltation deposit, clean out as necessary.

Bridges

Any scouring around wing walls. Stabilize and repair as needed. If concerned, hire a PE.
Any undermining of footings. Stabilize and repair as needed. If concerned, hire a PE.

Swales -

All ditches or pipes connecting ponds in series should be checked for debris that may block flow.
Repair and replace permanent check-dams as necessary.
Verify systems (both drainage ditches and sideyard swales) are maintaining originally constructed design slope and cross-sectional area. If fill or sediment contributes to elevation changes in swale, re-grading and re-shaping shall be performed. Licensed surveyors shall be hired to lay-out and check grades. No landscaping, earthen fill, gardens, or other obstructions (including sheds and other structures) shall be allowed in the swales that would impede design drainage flow patterns.

Vegetated Areas -

__ Need for planting, reseeding or sodding of native areas. Supplement alternative native vegetation if a significant portion has not established (50\% of the surface area). Reseed with alternative grass species if original grass cover has not successfully established.
_ Need for planting, reseeding or sodding of turf areas. Supplement alternative native vegetation if a significant portion has not established (75% of the surface area).
Reseed with alternative grass species if original grass cover has not successfully established.

Invasive vegetation (refer to the Native Plant Guide for Streams and Stormwater Facilities in Northeastern Illinois, or hire an environmental or landscape specialist). Remove as necessary.

Wetland Buffers -

Inspect for evidence of erosion or concentrated flows through or around the buffer. All eroded areas should be repaired, seeded and mulched. A shallow stone trench should be installed as a level spreader to distribute flows evenly in any area showing concentrated flows.
\qquad All existing undergrowth, forest floor duff layer, and leaf litter must remain undisturbed except in designated paths or permitted encroachment areas. No tree cutting is allowed except for normal maintenance of dead, diseased and damaged trees or; the culling of invasive, noxious or non-native species that are to be replaced by more desirable and native vegetation.
A buffer must maintain a dense, complete and vigorous cover of "non-lawn" vegetation which should not be mowed no more than once a year. Vegetation may include grass and other herbaceous species as well as shrubs and trees. Use or maintenance activities within the buffer shall be conducted so as to prevent damage to vegetation and exposure of soil.

STORMWATER MANAGEMENT SYSTEM ANNUAL MAINTENANCE PLAN FOR EXISTING FACILITIES

Purpose and Objective:

Detention and water quality treatment facilities, storm sewers, swales and native vegetation/buffer areas define a development's stormwater management system. When land is altered to build homes and other developments, the natural system of trees and plants is replaced with impervious surfaces like sidewalks, streets, decks, roofs, driveways, or lawns over highly compacted soils. As a result more rain water / storm water flows off the land at a faster rate and less rain water is absorbed into the soil. This can lead to streambank erosion, downstream flooding and increased concentrations of pollutants. The existing storm water management system was designed to help slow the rate of runoff from the development and maintain the quality of the storm water leaving the site.

Inspection Frequency:

Inspection experience will determine the required cleaning frequencies for the components of the stormwater management system. At a minimum, the attached checklist items should be inspected annually. Detention ponds (including the outlet control structure and restrictors) should be inspected on a monthly basis during wet weather conditions from March to November.

Maintenance Considerations:

Whenever possible, maintenance activities should be performed during the inspection. These activities should be supplemented by repair / replacement as required. A Registered Professional Engineer (PE) shall be hired for design resolution of specific items as indicated on the checklist below.

Cost Considerations:

Frequent maintenance program work execution will lead to less frequent and less costly longterm maintenance and repair. The attached checklist items may need to be amended based on inspection experience.

Record Keeping:

Separate and distinct records should be maintained by the responsible party for all tasks performed associated with this plan. The records shall include the dates of maintenance visits, who performed the inspection, and a description of the work performed.

Post-Construction Stormwater Management System Inspection Checklist

The following checklist describes the suggested routine inspection items and recommended measures to be taken to ensure that the Stormwater Management System functions as designed. When hiring a PE is the recommended measure, the PE shall inspect, evaluate and recommend corrective actions. The General section outlines items that should be taken into consideration during inspection and maintenance activities. While performing an overall inspection of your system, please check for the following items.

General -

- Litter and debris shall be controlled.
- Accumulated sediment shall be disposed of properly, along with any wastes generated during maintenance operations.
- Riprap areas shall be repaired with the addition of new riprap, as necessary, of adequate size and shape.
- Roads and parking lots shall be swept or vacuumed on a periodic basis.
- Access path to storm water management facilities should be free from obstructions (woodpiles, sheds, vegetation).
- Fences, gates and posts shall be maintained.
- Signs shall be maintained.

Storage Facilities (Detention, Retention and Water Quality Treatment Facilities)

Dams and berms
__ Settlement. If settlement observed, hire a PE.
Breaks or failures. If failure observed, notify the Village immediately and hire a PE. Erosion. Repair as needed.
Signs of leakage, seepage or wet spots. If observed, hire a PE.
-_ Unwanted growth or vegetation. Remove as needed.
Shorelines
__ Erosion or rip-rap failures. Repair as needed
__ Undermining. Stabilize and repair as needed.
Outlet and inlet structure
__ Obstructions blocking outlet pipe, restrictor, channel or spillway. Remove obstructions immediately.
__ Separation of joints. Repair as needed.
Cracks, breaks, or deterioration of concrete. Repair as needed
Scour and erosion at outlet. If observed, repair (consider additional or alternative stabilization methods).
__ Condition of trash racks. Remove any collected debris.

Outlet channel conditions downstream. Stabilize soil or remove obstructions as needed.

Storage Volume

\qquad Facilities shall be inspected to ensure that the constructed volume for detention is maintained. No sediment, topsoil, or other dumping into the facility shall be allowed. If a detention facility includes specific locations designed to accumulate sediment these locations should be dredged every 5 -yrs or when 50% of the volume has been lost.
_- Wet ponds lose 0.5-1.0\% of their volume annually. Dredging is required when accumulated volume loss reaches 15%, or approximately every 15-20 years.

Storm Sewers

\qquad System is free draining into collection channels or catch basins. If concerned, clean or repair.
__ Catch basins. Remove sediment when more than 50% of basin sump is filled.
__ Siltation in Culvert. Culverts shall be checked for siltation deposit, clean out as necessary.

Bridges

__ Any scouring around wing walls. Stabilize and repair as needed. If concerned, hire a PE.
\qquad Any undermining of footings. Stabilize and repair as needed. If concerned, hire a PE.

Swales -

All ditches or pipes connecting ponds in series should be checked for debris that may block flow.
Repair and replace permanent check-dams as necessary.
__ Verify systems (both drainage ditches and sideyard swales) are maintaining originally constructed design slope and cross-sectional area. If fill or sediment contributes to elevation changes in swale, re-grading and re-shaping shall be performed. Licensed surveyors shall be hired to lay-out and check grades. No landscaping, earthen fill, gardens, or other obstructions (including sheds and other structures) shall be allowed in the swales that would impede design drainage flow patterns.

Vegetated Areas -

__ Need for planting, reseeding or sodding of native areas. Supplement alternative native vegetation if a significant portion has not established (50% of the surface area). Reseed with alternative grass species if original grass cover has not successfully established.
__ Need for planting, reseeding or sodding of turf areas. Supplement alternative native vegetation if a significant portion has not established (75% of the surface area).

Reseed with alternative grass species if original grass cover has not successfully established.
Invasive vegetation (refer to the Native Plant Guide for Streams and Stormwater Facilities in Northeastern Illinois, or hire an environmental or landscape specialist, or hire an environmental or landscape specialist). Remove as necessary.

Wetland Buffers -

Inspect for evidence of erosion or concentrated flows through or around the buffer. All eroded areas should be repaired, seeded and mulched. A shallow stone trench should be installed as a level spreader to distribute flows evenly in any area showing concentrated flows.
All existing undergrowth, forest floor duff layer, and leaf litter must remain undisturbed except in designated paths or permitted encroachment areas. No tree cutting is allowed except for normal maintenance of dead, diseased and damaged trees or; the culling of invasive, noxious or non-native species that are to be replaced by more desirable and native vegetation.
A buffer must maintain a dense, complete and vigorous cover of "non-lawn" vegetation which should not be mowed no more than once a year. Vegetation may include grass and other herbaceous species as well as shrubs and trees. Use or maintenance activities within the buffer shall be conducted so as to prevent damage to vegetation and exposure of soil.

5.10 Yearly Tracking Forms

On-going SMPP Tasks

BMP	Task	Frequency *	Resp. Party	Date Compl'd	SMPP Section
A. 1	Maintain take-a-way racks				3.1.A, E
A.1, A. 6	Include SWPPP related article in quarterly newsletter	quarterly			
A. 6	Requirie all new development to furnish stamped inlet grates as of March 2009				3.1.F
A.6, B. 3	Maintain list of availble publications, link to SMC, link to SWALCO kids page, pet station locations, SW outreach activities and technical workshops on web-site				3.1.C, E
B. 2	Support adopt-a-highway efforts				3.2.F
B.3, C. 6	Participates in MAC meetings and events hosted by the QLP	monthly			3.2.E
B. 6	Oversee Public Participation portion of the program and update tracking lists				3.2
B. 7	Include PWD phone number on all village outreach publications				3.2.D
B. 7	Maintain Indirect Illicit Discharge Tracking forms and respond (hotline calls)				3.2.D
B.7, D. 5	Screen, log and route complaints/suggestions/requests to appropriate department for action				3.2.B
C. 2	Enforce IDDE Ordinance				3.2.A.2
C. 3	Compile data from the Storm Water Outfall Inspection Data Form (Appendix 5.3) onto the Outfall Inspection Screening Summary Form (Appendix 5.5)	monthly			3.3.D.2.d
$\begin{aligned} & \text { D.1-D.6, } \\ & \text { E.2-E. } 5 \end{aligned}$	Adminsiter \& enforce (or assist SMC in) WDO provisions (plan review, permitting and inspections)				3.4
D. 5	Keep log, track number, of se/sc complaints				3.4.F
D. 6	Obtain performance guarantees				3.4.G
D. 6	Enforce Village's Violation Notification Procedure				3.4.H
D.6, E. 5	Attend pre-construction meetings, make site inspections and final walk-through. Complete meeting checklists				3.4.E
E	Ensure development plans address RVRH and incorporate green infrastructure if practicable				3.5.B, C
E. 3	Obtain stormwater management system maintenance plans for new developments				3.5.D
E. 3	Pond Outlets and Roadway Culverts, inspect before and after forecasted storm	$>0.25{ }^{\prime \prime}$ rain			3.6.A.2.a, b
E. 7	Maintain pet waste stations, inspect \&clean/restock stations.	weekly			3.6.A. 5
E. 7	Collect yard waste/leafs	Oct-Nov			3.6.A.3.b
E. 7	Inspect swales and overland flow paths for erosion and sediment accumulation, report				3.6.A.2.g
E.7, F. 2	Street sweeping	April-Nov			3.6.A. 1
F. 2	Remove litter/debris from Village property, roadway right-of-ways, facilities, park \& rec areas				3.6.A.3.a
F. 2	Weed killer and fertilzers ($2 x$ and $4 \times$ per year respectively)				3.6.A.3.C
F. 2	Collection and disposal of "road kill" and carcasses				3.6.A. 7
F. 3	Prime Calcium Chloride dispensing system	monthly			3.6.A.4.a
F. 4	Perform leak tests on underground vehicle fueling tanks	monthly			3.6.A. 6
F. 4	Vehicle Maintenance collection and disposal (waste oil, antifreeze, batteries, tires)				3.6.A. 6
F. 4	Triple basin material removal/disposal and cleaning of	bi-monthly			3.6.A. 8
E. 7	Maintain green infrastructure				3.6.A. 10

* all tasks are on-going unless otherwise noted

5.11 Pool Dewatering Fact Sheet

GUIDELINES FOR DRAINING SWIMMING POOLS

Your swimming pool is filled with chlorinated water. Chlorinated water discharged directly to surface waters (wetlands, lakes, streams, and rivers), roadways or storm sewers has an adverse impact on local water quality. High concentrations of chlorine, as are present in swimming pools, are toxic to wildlife and fish. Appropriate preparations should be made prior to draining down a pool during pool winterizing. It is recommended that one of the following measures be used:

9 De-chlorinate the water in the pool prior to draining. This can be done through mechanical or chemical means. These types of products are readily available at local stores.

Or,

- Drain the pool over a period of several days across your lawn using the following additional guidelines:

1) Allow pool water to sit at least 2 days while receiving a reasonable amount of sunlight, and without further addition of chlorine or bromine. It is recommended that the chlorine level be tested after 2 days to ensure that safe levels are met (below 0.1 mg/I).
2) Pool discharge should be directed across your lawn, not down your driveway or into nearby storm sewer inlets. Our storm sewer system leads directly to wetlands, streams, lakes or rivers.

These recommendations are based on guidance from the Illinois Environmental Protection Agency. Visit www.epa.state.il.us/water for additional information.

You may also contact the Village Public Works Department at 526-8767.

Please do your part to help promote cleaner wetlands, streams, lakes and rivers.

Thank you.

5.12 General Permit ILR40

5.13 Bibliography and References

http://www.epa.state.il.us/
http://www.epa.gov/
http://www.co.lake.il.us/
http://www.mundelein.org/
http://www.co.lake.il.us/swalco/
Handbook for Identifying Illicit Stormwater Discharges, Charlotte County Edition, Charlotte County, Florida.

Industrial User Inspection and Sampling Manual for POTWs, The Office of Wastewater Enforcement and Compliance Water Enforcement Division - USEPA, April 1994.

Illicit Discharge Detection and Elimination, A Guidance Manual for Program Development and Technical Assessments, Center for Watershed Protection, October 2004.

Lake County Illicit Discharge Detection and Elimination (IDDE) Guidance Manual, Lake County Stormwater Management Commission, November 2006.

